12. Q12c
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Evaluate the limit of each difference quotient. Interpret the limit as the slope of the tangent to a curve at a specific point. </p><p><code class='latex inline'>\lim\limits_{h\to 0}\displaystyle\frac{\sqrt{4+h}-2}{h}</code></p>
Similar Question 2
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to 4}\frac{x-4}{\sqrt{x} -2} </code></p>
Similar Question 3
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to 0} \frac{\sqrt{1 - x} -1}{3x} </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to 0} \frac{\sqrt{1 - x} -1}{3x} </code></p>
<p>Evaluate the limit, if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{h \to 0} \frac{\sqrt{9 + h} -3}{h}</code></p>
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to 4}\frac{x-4}{\sqrt{x} -2} </code></p>
<p>Evaluate the limit, if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{t \to 0} \frac{\sqrt{1 + t} - \sqrt{1 - t}}{t}</code></p>
<p>Evaluate the limit of each difference quotient. Interpret the limit as the slope of the tangent to a curve at a specific point. </p><p><code class='latex inline'>\lim\limits_{h\to 0}\displaystyle\frac{\sqrt{4+h}-2}{h}</code></p>
<p>Evaluate the limit of each indeterminate quotient.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 4} \frac{\sqrt{x}- 2}{x - 4}</code></p>
<p>Evaluate the limit, if the limit exists. </p><p><code class='latex inline'>\lim\limits_{x\to 0} \displaystyle\frac{\sqrt{x+5}-\sqrt{5-x}}{x}</code></p>
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to 0} \frac{\sqrt{3 -x}- \sqrt{3 + x}}{x} </code></p>
<p>Evaluate the limit, if it exists, using any appropriate technique.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 0} \frac{\sqrt{x+ 1} - 1}{x}</code></p>
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to 0} \frac{\sqrt{9 + x}- 3}{x } </code></p>
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to 25}\frac{5 -\sqrt{x}}{x - 25} </code></p>
<p>Evaluate the limit by using the limit laws.</p><p><code class='latex inline'>\displaystyle \lim_{t \to 0}\frac{\sqrt{2 - t} - \sqrt{2}}{t}</code></p>
<p>Evaluate the limit of each indeterminate quotient.</p><p> <code class='latex inline'>\displaystyle \lim_{x \to 0} \frac{2 -\sqrt{4 + x}}{x}</code></p>
<p>Evaluate the limit, if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{u \to 2} \frac{\sqrt{4u + 1}-3}{u -2}</code></p>
<p>Evaluate the limit of each indeterminate quotient.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 0} \frac{\sqrt{7-x} - \sqrt{7 + x}}{x}</code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.