13. Q13a
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Evaluate the limit if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 7} \frac{x^2 -49}{x - 7} </code></p>
Similar Question 2
<p>Evaluate the limit by using the limit laws. </p><p><code class='latex inline'>\displaystyle \lim_{h \to 0}\frac{(h - 5)^2 - 25}{h} </code></p>
Similar Question 3
<p>Evaluate the limit by using the limit laws. </p><p><code class='latex inline'>\displaystyle \lim_{h \to 0}\frac{(h - 5)^2 - 25}{h} </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Evaluate the limit, if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{t \to -3} \frac{t^2-9}{2x^2 + 7t + 3}</code></p>
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to 6}\frac{(3- x)^2- 9}{x - 6} </code></p>
<p>Evaluate the limit of each difference quotient. Interpret the limit as the slope of the tangent to a curve at a specific point. </p><p><code class='latex inline'>\lim\limits_{h\to 0}\displaystyle\frac{(5+h)^2-25}{h}</code></p>
<p>If <code class='latex inline'>\displaystyle \lim_{x\to 1}\frac{f(x)-8}{x-1}= 10</code>, find <code class='latex inline'>\lim_{x\to 1}f(x)</code>.</p>
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to -3}\frac{x^2- 9}{x + 3} </code></p>
<p>Find the limit. <code class='latex inline'>\displaystyle \lim_{x\to 0^+} (\frac{1}{x} - \ln x)</code></p>
<p>Evaluate the limit, if it exists, using any appropriate technique.</p><p> <code class='latex inline'>\displaystyle \lim_{h \to 0} \frac{(x + h)^2 -x^2}{h}</code></p>
<p>Evaluate each limit, if possible.</p><p><code class='latex inline'> \displaystyle \lim_{x\to 4} \frac{4- \sqrt{12 +x}}{x - 4} </code></p>
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to -2} \frac{x^2 -4}{x + 2} </code></p>
<p>Evaluate the limit if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 7} \frac{x^2 -49}{x - 7} </code></p>
<p>Find the limit. <code class='latex inline'>\displaystyle \lim_{x\to 0} (\ln x^2 - x^{-2})</code></p>
<p>Evaluate the limit by using the limit laws.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 9}\frac{x^2 - 81}{\sqrt{x} - 3}</code></p>
<p>Evaluate the limit, if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{h \to 0} \frac{(3 + h)^{-1} -3^{-1}}{h}</code></p>
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to 2}\frac{49 -(5 + x)^2}{x - 2} </code></p>
<p>If <code class='latex inline'>\lim_{x\to 0}\frac{f(x)}{x^2}= 5</code>, find the following limits</p><p>(a) <code class='latex inline'>\displaystyle \lim_{x\to 0}f(x)</code></p><p>(b) <code class='latex inline'>\displaystyle \lim_{x\to 0} \frac{f(x)}{x}</code></p>
<p>Find the limit.</p><p><code class='latex inline'>\displaystyle \lim_{x\to 2^+} \frac{x^2 -2x - 8}{x^2 - 5x + 6}</code></p>
<p>Evaluate the limit, if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 2} \frac{x^2 -4x + 4}{x^4-3x^2 -4}</code></p>
<p>Evaluate the limit, if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 5} \frac{x^2 -5x + 6}{x -5}</code></p>
<p>Is there anything wrong with the following?</p><p><code class='latex inline'> \displaystyle \lim_{x \to 2} \frac{x^2 + x -6}{x - 2} = \lim_{x \to 2} (x + 3) </code></p>
<p>Evaluate the limit, if the limit exists. </p><p><code class='latex inline'>\lim\limits_{x\to a} \displaystyle\frac{(x+4a)^2-25a^2}{x-a}</code></p>
<p>Evaluate the limit, if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{h \to 0} \frac{(-5 + h)^2 - 25}{h}</code></p>
<p>Evaluate the limit by using the limit laws. </p><p><code class='latex inline'>\displaystyle \lim_{h \to 0}\frac{(h - 5)^2 - 25}{h} </code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.