24. Q24a
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Use numerical and graphical evidence to guess the value of the limit</p><p><code class='latex inline'> \displaystyle \lim_{x\to 1} \frac{x^3 -1}{\sqrt{x} -1} </code></p>
Similar Question 2
<p>Use numerical and graphical evidence to guess the value of the limit</p><p><code class='latex inline'> \displaystyle \lim_{x\to 1} \frac{x^3 -1}{\sqrt{x} -1} </code></p>
Similar Question 3
<p>Evaluate the limit by change of variable.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 0} \frac{(x + 8)^{\frac{1}{3}} -2}{x} </code> </p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Evaluate the limit by using a change of variable.</p><p><code class='latex inline'>\displaystyle \lim_{x\to 1} \frac{x^{\frac{1}{6}}-1}{x - 1}</code></p>
<p>Evaluate the following limits.</p><p><code class='latex inline'> \displaystyle \lim_{x\to \infty} \frac{7\sqrt[3]{x} + 4\sqrt{x} - 3}{9\sqrt[3]{x} - 2\sqrt{x} + 9} </code></p>
<p>Use numerical and graphical evidence to guess the value of the limit</p><p><code class='latex inline'> \displaystyle \lim_{x\to 1} \frac{x^3 -1}{\sqrt{x} -1} </code></p>
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{ x\to 0} \frac{(2x + 1)^{\frac{1}{3}}-1}{x} </code></p>
<p>Evaluate the limit by using a change of variable.</p><p> <code class='latex inline'>\displaystyle \lim_{x\to 27} \frac{27 - x}{x^{\frac{1}{3}} -3}</code></p>
<p>Evaluate the limit by using a change of variable.</p><p><code class='latex inline'>\displaystyle \lim_{x\to 0} \frac{(x +8)^{\frac{1}{3}}-2}{x}</code></p>
<p>Evaluate the limit by change of variable.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 1} \frac{x^{\frac{1}{6}} -1}{x^{\frac{1}{3}} -1} </code> </p>
<p>Evaluate the limit by using a change of variable.</p><p><code class='latex inline'>\displaystyle \lim_{x\to 4} \frac{\sqrt{x} -2}{\sqrt{x^3} - 8}</code></p>
<p>Evaluate the limit.</p><p><code class='latex inline'>\displaystyle \lim_{x\to 8} \frac{\sqrt{2} (\sqrt{x} - \sqrt{8})}{\sqrt[3]{x} - 2} </code></p>
<p>Evaluate the limit by using the limit laws.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 1}\frac{\sqrt{x} - x^2}{1 - \sqrt{x}}</code></p>
<p>Evaluate the limit by change of variable.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 0} \frac{(x + 8)^{\frac{1}{3}} -2}{x} </code> </p>
<p>Evaluate the limit by using a change of variable.</p><p><code class='latex inline'>\displaystyle \lim_{x\to 1} \frac{x^{\frac{1}{6}}-1}{x^{\frac{1}{3}} - 1}</code></p>
<p> <code class='latex inline'>\displaystyle \lim_{x\to 8} \frac{2- \sqrt[3]{x}}{8 - x}</code></p>
<p>Evaluate the limit by change of variable.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 8} \frac{\sqrt[3]{x} -2}{x - 8} </code> </p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.