3. Q3c
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Find the critical numbers of <code class='latex inline'>f(x)</code> and the local extreme values.</p><p><code class='latex inline'> \displaystyle f(x) = 1 - \sqrt{x}, 0 \leq x \leq 1 </code></p>
Similar Question 2
<p>Find the critical numbers of <code class='latex inline'>f(x)</code> and the local extreme values.</p><p><code class='latex inline'> \displaystyle f(x) = \frac{1}{x}, 0 \leq x \leq 1 </code></p>
Similar Question 3
<p>Find the critical numbers of <code class='latex inline'>f(x)</code> and the local extreme values.</p><p><code class='latex inline'> \displaystyle f(x) = 1 - \sqrt{x}, 0 \leq x \leq 1 </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Determine the points at which <code class='latex inline'>f'(x) = 0</code> for each of the following functions:</p><p> <code class='latex inline'>f(x) = x^3 +6x^2 + 1</code></p>
<p>Find the critical numbers of <code class='latex inline'>f(x)</code> and the local extreme values.</p><p><code class='latex inline'> \displaystyle f(x) = x^2(1 - x ) </code></p>
<p>For each function, do the following.</p> <ul> <li>i) Find the first derivative</li> <li>ii) Use a graphing calculator or other graphing technology to graph the derivative. </li> <li>iii) Use the graph to determine the intervals of increase and decrease for the function <code class='latex inline'>f(x)</code>.</li> <li>iv) Verify your response by graphing function <code class='latex inline'>f(x)</code> of the same set of axes as the graph of <code class='latex inline'>f'(x)</code>.</li> </ul> <p><code class='latex inline'>f(x) = x^3 -3x^2 -9x + 6</code></p>
<p>For each function, do the following.</p> <ul> <li>i) Find the first derivative</li> <li>ii) Use the graph to determine the intervals of increase and decrease for the function <code class='latex inline'>f(x)</code>.</li> <li>iii) Verify your response by graphing function f(x) o the same set of axes as the graph of <code class='latex inline'>f'(x)</code>.</li> </ul> <p><code class='latex inline'>f(x) = \frac{1}{3}x^3 -4x</code></p>
<p>Find the critical numbers of <code class='latex inline'>f(x)</code> and the local extreme values.</p><p><code class='latex inline'> \displaystyle f(x) = 1 - \sqrt{x}, 0 \leq x \leq 1 </code></p>
<p>Find the critical numbers of <code class='latex inline'>f(x)</code> and the local extreme values.</p><p><code class='latex inline'> \displaystyle f(x) = \frac{1}{x}, 0 \leq x \leq 1 </code></p>
<p>Find the critical numbers of <code class='latex inline'>f(x)</code> and the local extreme values.</p><p><code class='latex inline'> \displaystyle f(x) = x^{\frac{2}{3}} + 2x^{-\frac{2}{3}} </code></p>
<p>For each derivative, find the intervals of increase and decrease for the function.</p><p><code class='latex inline'>k'(x) = x^3 -3x^2 -18x + 40</code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.