2. Q2c
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p><strong>(a)</strong> Find the intervals on which <code class='latex inline'>f</code> is increasing or decreasing.</p><p><strong>(b)</strong> Find the local maximum and minimum values of <code class='latex inline'>f</code>.</p><p><strong>(c)</strong> On what intervals is <code class='latex inline'>f</code> concave upward or concave downward? Explain.</p><p><strong>(d)</strong> Find the intervals of concavity and the in inflection points.</p><p><code class='latex inline'>\displaystyle f(x) = x^3 - 3x^2 - 9x +4 </code></p>
Similar Question 2
<p>The graph of the function <code class='latex inline'>y=f(x)</code> has local extrema at points <code class='latex inline'>A</code>, <code class='latex inline'>C</code>, and <code class='latex inline'>E</code> and points of inflection at <code class='latex inline'>B</code> and <code class='latex inline'>D</code>. If <code class='latex inline'>a</code>,<code class='latex inline'>b</code>,<code class='latex inline'>c</code>,<code class='latex inline'>d</code>, and <code class='latex inline'>e</code> are the <code class='latex inline'>x</code>-coordinates of the points, state the intervals on which the following conditions are true:</p><img src="/qimages/637" /><p><code class='latex inline'>f'(x)<0</code> and <code class='latex inline'>f''(x)>0</code></p>
Similar Question 3
<p><strong>(a)</strong> Find the intervals on which <code class='latex inline'>f</code> is increasing or decreasing.</p><p><strong>(b)</strong> Find the local maximum and minimum values of <code class='latex inline'>f</code>.</p><p><strong>(c)</strong> On what intervals is <code class='latex inline'>f</code> concave upward or concave downward? Explain.</p><p><strong>(d)</strong> Find the intervals of concavity and the in inflection points.</p><p><code class='latex inline'>\displaystyle f(x) = x^4 -2x^2 +3 </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p><strong>(a)</strong> Find the intervals on which <code class='latex inline'>f</code> is increasing or decreasing.</p><p><strong>(b)</strong> Find the local maximum and minimum values of <code class='latex inline'>f</code>.</p><p><strong>(c)</strong> On what intervals is <code class='latex inline'>f</code> concave upward or concave downward? Explain.</p><p><strong>(d)</strong> Find the intervals of concavity and the in inflection points.</p><p><code class='latex inline'>\displaystyle f(x) = x^4 -2x^2 +3 </code></p>
<p>The graph of the function <code class='latex inline'>y=f(x)</code> has local extrema at points <code class='latex inline'>A</code>, <code class='latex inline'>C</code>, and <code class='latex inline'>E</code> and points of inflection at <code class='latex inline'>B</code> and <code class='latex inline'>D</code>. If <code class='latex inline'>a</code>,<code class='latex inline'>b</code>,<code class='latex inline'>c</code>,<code class='latex inline'>d</code>, and <code class='latex inline'>e</code> are the <code class='latex inline'>x</code>-coordinates of the points, state the intervals on which the following conditions are true:</p><img src="/qimages/637" /><p><code class='latex inline'>f'(x)<0</code> and <code class='latex inline'>f''(x)>0</code></p>
<p><strong>(a)</strong> Find the intervals on which <code class='latex inline'>f</code> is increasing or decreasing.</p><p><strong>(b)</strong> Find the local maximum and minimum values of <code class='latex inline'>f</code>.</p><p><strong>(c)</strong> On what intervals is <code class='latex inline'>f</code> concave upward or concave downward? Explain.</p><p><strong>(d)</strong> Find the intervals of concavity and the in inflection points.</p><p><code class='latex inline'>\displaystyle f(x) = x^3 - 3x^2 - 9x +4 </code></p>
<p>The graph of the function <code class='latex inline'>y=f(x)</code> has local extrema at points <code class='latex inline'>A</code>, <code class='latex inline'>C</code>, and <code class='latex inline'>E</code> and points of inflection at <code class='latex inline'>B</code> and <code class='latex inline'>D</code>. If <code class='latex inline'>a</code>,<code class='latex inline'>b</code>,<code class='latex inline'>c</code>,<code class='latex inline'>d</code>, and <code class='latex inline'>e</code> are the <code class='latex inline'>x</code>-coordinates of the points, state the intervals on which the following conditions are true:</p><img src="/qimages/637" /><p><code class='latex inline'>f'(x)<0</code> and <code class='latex inline'>f''(x)<0</code></p>
<p>The graph of the first derivative <code class='latex inline'>f'</code> of a function <code class='latex inline'>f</code> is shown.</p> <ul> <li>On what intervals is <code class='latex inline'>f</code> concave upward or concave downward? Explain.</li> </ul> <img src="/qimages/2336" />
<p><strong>(a)</strong> Find the intervals on which <code class='latex inline'>f</code> is increasing or decreasing.</p><p><strong>(b)</strong> Find the local maximum and minimum values of <code class='latex inline'>f</code>.</p><p><strong>(c)</strong> On what intervals is <code class='latex inline'>f</code> concave upward or concave downward? Explain.</p><p><strong>(d)</strong> Find the intervals of concavity and the in inflection points.</p><p><code class='latex inline'>\displaystyle f(x) = 2x^3 - 9x^2 + 12x -3 </code></p>
<p>Given each graph of <code class='latex inline'>''(x)</code>, state the intervals of concavity for the function <code class='latex inline'>f(x)</code>. Also indicate where any points of inflection occur for <code class='latex inline'>f(x)</code>.</p><img src="/qimages/1104" />
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.