a) Write the vector \vec{OA} = (-1, 2, 4)
using the standard unit vectors.
b) Determine |\vec{OA}|
.
Write the vector \vec{OB} = 3\vec{i} + 4\vec{j} - 4\vec{k}
in component form and calculate its magnitude.
If \vec{a} = (1, 3, -3)
, \vec{b} =(-3, 6 ,12)
, and \vec{c} = (0, 8, 1)
, determine |\vec{a} + \displaystyle{\frac{1}{3}}\vec{b} - \vec{c}|
.
For the vectors \vec{OA} = (-3, 4, 12)
and \vec{OB} = (2, 2, -1)
, determine the following:
the components of vector \vec{OP}
, where \vec{OP} = \vec{OA} +\vec{ OB}
For the vectors \vec{OA} = (-3, 4, 12)
and \vec{OB} = (2, 2, -1)
, determine the following:
|\vec{OA}|
, |\vec{OB}|
, and |\vec{OP}|
.
For the vectors \vec{OA} = (-3, 4, 12)
and \vec{OB} = (2, 2, -1)
, determine the following:
\vec{AB}
and |\vec{AB}|
. What does \vec{AB}
represent?
Given \vec{x} = (1, 4, - 1), \vec{y} = (1, 3, -2)
, and \vec{z} = (-2, 1, 0)
, determine a vector equivalent to each of the following:
\displaystyle \vec{x} -2\vec{y} - \vec{z}
Given \vec{x} = (1, 4, - 1), \vec{y} = (1, 3, -2)
, and \vec{z} = (-2, 1, 0)
, determine a vector equivalent to each of the following:
\displaystyle -2\vec{x} - 3\vec{y} +\vec{z}
Given \vec{x} = (1, 4, - 1), \vec{y} = (1, 3, -2)
, and \vec{z} = (-2, 1, 0)
, determine a vector equivalent to each of the following:
\displaystyle \frac{1}{2}\vec{x} - \vec{y} + 3\vec{z}
Given \vec{x} = (1, 4, - 1), \vec{y} = (1, 3, -2)
, and \vec{z} = (-2, 1, 0)
, determine a vector equivalent to each of the following:
\displaystyle 3\vec{x} + 5\vec{y} + 3\vec{z}
Given \vec{p} = 2\vec{i} - \vec{j} + \vec{k}
and \vec{q} = -\vec{i} -\vec{j} + \vec{k}
, determine the following in terms of the standard unit vectors.
\displaystyle \vec{p} + \vec{q}
Given \vec{p} = 2\vec{i} - \vec{j} + \vec{k}
and \vec{q} = -\vec{i} -\vec{j} + \vec{k}
, determine the following in terms of the standard unit vectors.
\displaystyle \vec{p} - \vec{q}
Given \vec{p} = 2\vec{i} - \vec{j} + \vec{k}
and \vec{q} = -\vec{i} -\vec{j} + \vec{k}
, determine the following in terms of the standard unit vectors.
\displaystyle 2\vec{p} - 5\vec{q}
Given \vec{p} = 2\vec{i} - \vec{j} + \vec{k}
and \vec{q} = -\vec{i} -\vec{j} + \vec{k}
, determine the following in terms of the standard unit vectors.
\displaystyle -2\vec{p} +5\vec{q}
If \vec{m} = 2\vec{i} -\vec{j} + \vec{k}
and \vec{q} = -\vec{i} -\vec{j} +
\vec{k}
, determine the following in terms of the standard unit vectors.
|\vec{m}-\vec{n}|
If \vec{m} = 2\vec{i} -\vec{j} + \vec{k}
and \vec{q} = -\vec{i} -\vec{j} +
\vec{k}
, determine the following in terms of the standard unit vectors.
|\vec{m}+\vec{n}|
If \vec{m} = 2\vec{i} -\vec{j} + \vec{k}
and \vec{q} = -\vec{i} -\vec{j} +
\vec{k}
, determine the following in terms of the standard unit vectors.
2\vec{m} + 3\vec{n}
If \vec{m} = 2\vec{i} -\vec{j} + \vec{k}
and \vec{q} = -\vec{i} -\vec{j} +
\vec{k}
, determine the following in terms of the standard unit vectors.
-5\vec{m}
Given \vec{x} + \vec{y} = -\vec{i} + 2\vec{j} + 5\vec{k}
, and \vec{n} = -2\vec{i} + \vec{j} + 2\vec{k}
, determine \vec{x}
and \vec{y}
.
Three vectors, \vec{OA} = (a, b, 0), \vec{OB} = (a, 0, c)
, and \vec{OC} = (0, b, c)
, are given.
In a sentence, describe what each vector represents.
Three vectors, \vec{OA} = (a, b, 0), \vec{OB} = (a, 0, c)
, and \vec{OC} = (0, b, c)
, are given.
Write each of the given vectors using the standard unit vectors.
Three vectors, \vec{OA} = (a, b, 0), \vec{OB} = (a, 0, c)
, and \vec{OC} = (0, b, c)
, are given.
Determine a formula for each of |\vec{OA}|, |\vec{OB}|
, and |\vec{OC}|
.
Three vectors, \vec{OA} = (a, b, 0), \vec{OB} = (a, 0, c)
, and \vec{OC} = (0, b, c)
, are given.
Determine \vec{AB}
. What does \vec{AB}
represent?
Given the point A(-2, -6, 3) and B(3, -4, 12), determine each of the following:
|\vec{OA}|
Given the point A(-2, -6, 3) and B(3, -4, 12), determine each of the following:
|\vec{OB}|
Given the point A(-2, -6, 3) and B(3, -4, 12), determine each of the following:
\vec{AB}
Given the point A(-2, -6, 3) and B(3, -4, 12), determine each of the following:
|\vec{AB}|
Given the point A(-2, -6, 3) and B(3, -4, 12), determine each of the following:
\vec{BA}
Given the point A(-2, -6, 3)
and B(3, -4, 12)
, determine each of the following:
|\vec{BA}|
The vertices of quadrilateral ABCD are given as A(0, 3, 5), B(3, -1, 17), C(7, -3, 15), and D(4, 1, 3). Prove that ABCD is a parallelogram.
Given 2\vec{x} + \vec{y} -2\vec{z} = \vec{0}, \vec{x} = (-1, b, c), \vec{y} = (a, -2, c)
, and \vec{z} = (-a, 6 ,c)
, determine the value of the unknowns.
A parallelepiped is determined by the vectors \vec{OA} = (-2, 2, 5), \vec{OB} = (0, 4, 1)
, and \vec{OC} = (0, 5, -1)
.
(a) Draw a sketch of the parallelepiped former by these vectors.
(b) Determine the coordinates of tall of the vertices for the parallelepiped.
Given the points A(-2, 1, 3)
and B(4, -1, 3)
, determine the coordinates of the point on the x-axis that is equidistant from these two points.
Give |\vec{a}| = 3, |\vec{b}| = 5
, and |\vec{a} + \vec{b}| = 7
, determine |\vec{a} - \vec{b}|
.