11. Q11
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>For what value of <code class='latex inline'>b</code> will the line <code class='latex inline'>y = -2x + b</code> be tangent to the parabola <code class='latex inline'>y = 3x^2 + 4x - 1</code>?</p>
Similar Question 2
<p>Determine the value of <code class='latex inline'>k</code> in <code class='latex inline'>y = kx^2 -5x + 2</code> that will result in the intersection of the line <code class='latex inline'>y = -3x + 4</code> with the quadratic at </p> <ul> <li><strong>a)</strong> two points </li> <li><strong>b)</strong> one point</li> <li><strong>c)</strong> no point</li> </ul>
Similar Question 3
<p>Find the equation of the quadratic function that has the given zeros and contains the gin point. Express each function in standard form. Graph each function to check.</p><p><code class='latex inline'>y=2x^2+ 4x - 1</code> and a line with a slope of 2</p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Find the equation of the quadratic function that has the given zeros and contains the gin point. Express each function in standard form. Graph each function to check.</p><p><code class='latex inline'>y=2x^2+ 4x - 1</code> and a line with a slope of 2</p>
<p>Determine the value of k in <code class='latex inline'>y = -x^2 + 4x + k</code> that will result in the intersection of the line <code class='latex inline'>y = 8x - 2</code> with the quadratic at</p><p><strong>c)</strong> no point</p>
<p>Determine the value(s) of <code class='latex inline'>k</code> such that the linear function <code class='latex inline'>g(x) = 4x + k</code> does not intersect the parabola <code class='latex inline'>f(x) = -3x^2 -x -4</code>.</p>
<p>Find the equation of the quadratic function that has the given zeros and contains the gin point. Express each function in standard form. Graph each function to check.</p><p><code class='latex inline'>y= 3x^2 - 4x + 1</code> and a line with a slope of -2</p>
<p>Determine the value of <code class='latex inline'>k</code> in <code class='latex inline'>y = kx^2 -5x + 2</code> that will result in the intersection of the line <code class='latex inline'>y = -3x + 4</code> with the quadratic at </p> <ul> <li><strong>a)</strong> two points </li> <li><strong>b)</strong> one point</li> <li><strong>c)</strong> no point</li> </ul>
<p><code class='latex inline'>\displaystyle \begin{array}{l} k x-3 y=4 \\ 4 x-5 y=7 \end{array} </code></p><p>In the system of equations above, <code class='latex inline'>\displaystyle k </code> is a constant and <code class='latex inline'>\displaystyle x </code> and <code class='latex inline'>\displaystyle y </code> are variables. For what value of <code class='latex inline'>\displaystyle k </code> will the system of equations have no solution?</p><p>A) <code class='latex inline'>\displaystyle \frac{12}{5} </code></p><p>B) <code class='latex inline'>\displaystyle \frac{16}{7} </code></p><p>C) <code class='latex inline'>\displaystyle -\frac{16}{7} </code></p><p>D) <code class='latex inline'>\displaystyle -\frac{12}{5} </code></p>
<p>For what value of <code class='latex inline'>b</code> will the line <code class='latex inline'>y = -2x + b</code> be tangent to the parabola <code class='latex inline'>y = 3x^2 + 4x - 1</code>?</p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.