1. Q1a
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Graph each relation and state the slope.</p><p><code class='latex inline'> \displaystyle y= -x </code></p>
Similar Question 2
<p>Order each of the following sets of lines based on slope, from closest to horizontal to closest to vertical.</p> <ol> <li><code class='latex inline'>y = \frac{2}{3}x - 7</code></li> <li><code class='latex inline'>y = 2.5x - 3.7</code></li> <li><code class='latex inline'>y = \frac{9}{2}x + 4</code></li> </ol>
Similar Question 3
<p>Consider the lines formed by each of the following equations.</p><p><code class='latex inline'> \displaystyle \begin{array}{cccccc} &a) & y = -2x + 8 & b) & y = \frac{1}{3}x + 1 \\ & & y = -\frac{15}{2}x + 3 & & y = 3x - 9\\ & & y = -\frac{1}{2}x - 7 & & y = x + 5\\ \end{array} </code></p> <ul> <li>i) Identify the steepest and the least steep line in each of parts a) and b).</li> <li>ii) Use the slope and y-intercept to sketch the graphs to verify your answers in i).</li> </ul>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Graph each relation and state the slope.</p><p><code class='latex inline'> \displaystyle y= -\frac{1}{5}x + 1 </code></p>
<p>A promoter is holding a video dance. Tickets cost <code class='latex inline'>\\$15</code> per person, and he has given away 10 free tickets to radio stations. </p><p>Here is the linear equation that represents the above. <code class='latex inline'> \displaystyle R = 15n - 150 </code></p> <ul> <li> Graph the linear relation.</li> </ul>
<p>Identify the slope and y-intercept of the line.</p><p>a. <code class='latex inline'>y = 4x - 5</code></p><p>b. <code class='latex inline'>y = -2x +3</code></p><p>c. <code class='latex inline'>y =\frac{3}{7}x - \frac{2}{3}</code></p>
<p>Graph the linear relation.</p><p><code class='latex inline'>\displaystyle y = - \frac{1}{4}x + 5 </code></p>
<p>Represent the following as a equation of a table or graph.</p><p><code class='latex inline'>y = 2x + 4</code></p>
<p> Find the equation of the line given the following information of slope and a point.</p><p><code class='latex inline'>m = -\frac{4}{7}</code> and passes through <code class='latex inline'>(0, -2)</code>.</p>
<p>Represent the following equation as a graph or table.</p><p><code class='latex inline'>3x - 2y = 12</code></p>
<p> Sketch the following equations all in one graph.</p><p><strong>(a)</strong> <code class='latex inline'>y = x</code></p><p><strong>(b)</strong> <code class='latex inline'>y = -\frac{2}{3}x + 1</code></p><p><strong>(c)</strong> <code class='latex inline'>y = 3x - 5</code></p>
<p>Sketch the graph using slope and y-intercept.</p><p><code class='latex inline'>y = -\frac{7}{6}x</code></p>
<p>Order each of the following sets of lines based on slope, from closest to horizontal to closest to vertical.</p> <ol> <li><code class='latex inline'>y = \frac{2}{3}x - 7</code></li> <li><code class='latex inline'>y = 2.5x - 3.7</code></li> <li><code class='latex inline'>y = \frac{9}{2}x + 4</code></li> </ol>
<p>Match each equation to its corresponding graph.</p><p><code class='latex inline'>y = -\frac{4}{3}x + 3</code></p><img src="/qimages/2959" />
<p>Graph each relation and state the slope.</p><p><code class='latex inline'> \displaystyle y= \frac{2}{3}x -4 </code></p>
<p>Graph each relation and state the slope.</p><p><code class='latex inline'> \displaystyle y= -x </code></p>
<p>Match each linear equation with the graph that best represents it.</p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &a) & y = -3x + 5 &c) & y=\frac{5}{8}x &e) &x = 5\\ &b) & y = 7x - 4 &d) & y=-\frac{1}{4}x - 4 &f) & y = 3\\ \end{array} </code></p><img src="/qimages/1365" />
<p>Match each equation to its corresponding graph.</p><p><code class='latex inline'>x = -2</code></p><img src="/qimages/2959" />
<p>Graph each relation and state the slope.</p><p><code class='latex inline'> \displaystyle y = 3x </code></p>
<p>Describe each line using words: <em>horizontal, vertical, rising to the right, or falling to the right</em>.</p><p>a. <code class='latex inline'>y = -3x + 5</code></p><p>b. <code class='latex inline'>y = -2</code></p><p>c. <code class='latex inline'>y = \frac{2}{3}</code></p><p>d. <code class='latex inline'>x = 4.5</code></p><p>e. <code class='latex inline'>y = 4x - 1</code></p><p>f. <code class='latex inline'>y = \frac{3}{4}x + \frac{1}{3}</code></p>
<p>Match each equation to its corresponding graph.</p><p><code class='latex inline'>y = -2</code></p><img src="/qimages/2959" />
<p>Determine the slope and y-intercept.</p><p><code class='latex inline'> \displaystyle 3x - 4y + 9 = 0 </code></p>
<p>Order each of the following sets of lines based on slope, from closest to horizontal to closest to vertical.</p> <ol> <li><code class='latex inline'>y = -\dfrac{1}{5}x + 8</code></li> <li><code class='latex inline'>y = -6x - \frac{5}{8}</code></li> <li><code class='latex inline'>y = -2x + 4</code></li> </ol>
<p>Graph <code class='latex inline'> \displaystyle y = \frac{2}{3}x -4 </code></p>
<p>Graph each relation and state the slope.</p><p><code class='latex inline'> \displaystyle y= \frac{3}{4}x + 1 </code></p>
<p><strong>a)</strong> Graph <code class='latex inline'>y=2x + 2</code>, <code class='latex inline'>y=3x</code>, and <code class='latex inline'>y=3x - 1</code> on the same axes.</p><p><strong>b)</strong> How do the equations tell you whether the graph will pass through the origin?</p>
<p>Graph the linear relation.</p><p><code class='latex inline'>\displaystyle y = 3x -1 </code></p>
<p>Suppose each equation set represents ski hill.</p><p>a) Which two equation could not possibly represent ski hills? Why?</p><p>b) Organize the hills to: <em>Bunny Hills(least steep), Intermediate Hills(moderately steep), and Double Black Diamond Hills(steepest)</em>.</p><p><strong>Set 1</strong></p> <ol> <li><code class='latex inline'>y = x</code></li> <li><code class='latex inline'>y = 7</code></li> <li><code class='latex inline'>x = 2</code></li> </ol> <p><strong>Set 2</strong></p> <ol> <li><code class='latex inline'>y = \frac{2}{3}x - 7</code></li> <li><code class='latex inline'>y = 2.5x - 3.7</code></li> <li><code class='latex inline'>y = \frac{9}{2}x + 4</code></li> </ol> <p><strong>Set 3</strong></p> <ol> <li><code class='latex inline'>y = -\frac{1}{5}x + 8</code></li> <li><code class='latex inline'>y = -6x - \frac{5}{8}</code></li> <li><code class='latex inline'>y = -2x + 4</code></li> </ol>
<p>Consider the lines formed by each of the following equations.</p><p><code class='latex inline'> \displaystyle \begin{array}{cccccc} &a) & y = -2x + 8 & b) & y = \frac{1}{3}x + 1 \\ & & y = -\frac{15}{2}x + 3 & & y = 3x - 9\\ & & y = -\frac{1}{2}x - 7 & & y = x + 5\\ \end{array} </code></p> <ul> <li>i) Identify the steepest and the least steep line in each of parts a) and b).</li> <li>ii) Use the slope and y-intercept to sketch the graphs to verify your answers in i).</li> </ul>
<p>Graph each relation and state the slope.</p><p><code class='latex inline'> \displaystyle y = -2x </code></p>
<p>Sketch the graph using slope and y-intercept.</p><p><code class='latex inline'>y = -\frac{1}{4}x + 3</code></p>
<p>Match each equation to its corresponding graph.</p><p><code class='latex inline'>x - 2y = 4</code></p><img src="/qimages/2959" />
<p>Sketch each of the following. Show the y-intercept.</p><p><code class='latex inline'> \displaystyle y = 2x - 3 </code></p>
<p>Sketch the graph using slope and y-intercept.</p><p><code class='latex inline'>y = 2x - 4</code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.