3. Q3b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>State the restriction for each function.</p><img src="/qimages/791" />
Similar Question 2
<p>State the restriction for each function.</p><img src="/qimages/791" />
Similar Question 3
<p>Find the holes and sketch the function.</p><p><code class='latex inline'>\displaystyle f(x) = \frac{x^2 - x -2}{x^2 - 1} </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>State the restriction for each function.</p><img src="/qimages/793" />
<p>Determine whether <code class='latex inline'>g(x)</code> is the simplified version of <code class='latex inline'>f(x)</code>. If it is, then state the restrictions needed. If not, determine the correct simplified version.</p><p><code class='latex inline'> \displaystyle f(x) =\frac{x^2 +6x + 5}{x + 5}, g(x) = x^2</code></p>
<p>Determine whether <code class='latex inline'>g(x)</code> is the simplified version of <code class='latex inline'>f(x)</code>. If it is, then state the restrictions needed. If not, determine the correct simplified version.</p><p><code class='latex inline'> \displaystyle f(x) =\frac{x^2 -16}{x^2 -8x + 16}, g(x) = x+ 4</code></p>
<p>Find the holes and sketch the function.</p><p><code class='latex inline'>\displaystyle f(x) = \frac{x^2 - x -2}{x^2 - 1} </code></p>
<p>Find the holes and sketch the function.</p><p><code class='latex inline'>\displaystyle f(x) = \frac{x^3 - 8}{x^2 -4 } </code></p>
<p>State the restriction for each function.</p><img src="/qimages/794" />
<p>Determine whether <code class='latex inline'>g(x)</code> is the simplified version of <code class='latex inline'>f(x)</code>. If it is, then state the restrictions needed. If not, determine the correct simplified version.</p><p><code class='latex inline'>\displaystyle f(x) =\frac{x^2 + 10x + 16}{x^2 + 2x -48}, g(x) = \frac{x + 2}{x - 6}</code></p>
<p>State the restriction for each function.</p><img src="/qimages/791" />
<p>State the restriction for each function.</p><img src="/qimages/792" />
<p>Determine whether <code class='latex inline'>g(x)</code> is the simplified version of <code class='latex inline'>f(x)</code>. If it is, then state the restrictions needed. If not, determine the correct simplified version.</p><p><code class='latex inline'>\displaystyle f(x) =\frac{12x^2 -5x -2}{3x^2 - 2x }, g(x) = \frac{4x + 1}{x }</code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.