20. Q4d
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Video not available! See below for lectures and more practice questions!
Similar Question 1
<p>Evaluate each function for the given value of <code class='latex inline'>\displaystyle x </code>, and write the input <code class='latex inline'>\displaystyle x </code> and output <code class='latex inline'>\displaystyle f(x) </code> as an ordered pair.</p><p><code class='latex inline'>\displaystyle f(x)=\frac{2}{9} x-\frac{9}{2} </code> for <code class='latex inline'>\displaystyle x=9 </code></p>
Similar Question 2
<p>State the domain and range of each relation.</p><p><code class='latex inline'>\displaystyle \{(3,1),(4,-2),(5,3),(6,0)\} </code></p>
Similar Question 3
<p>State which of the following are graphs of functions.</p><img src="/qimages/63848" />
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Determine whether each relation is a function.</p><img src="/qimages/12329" />
<p>Find the range of <code class='latex inline'>f(x) = \frac{3}{x}</code>.</p>
<ol> <li>State the domain and the range for each relation. Determine if each relation is a function.</li> </ol> <img src="/qimages/17792" />
<p>State the domain and range of each relation.</p><p><code class='latex inline'>\displaystyle \{(-1,1),(-1,2),(-1,3),(-1,4)\} </code></p>
<p>Determine whether each relation is a function. Explain.</p><p><code class='latex inline'>\displaystyle \{(2,2),(-1,5),(5,2),(2,-4)\} </code></p>
<p>Use the vertical line test to determine whether the relation is a function.</p><img src="/qimages/55068" />
<p>Evaluate <code class='latex inline'>\displaystyle f(3) </code> for each of the following.</p><p> <code class='latex inline'>\displaystyle \{(1,2),(2,0),(3,1),(4,2)\} </code></p>
<p>Is the relation a function? Why or why not?</p><p><code class='latex inline'>\displaystyle \begin{array}{|c|c|} \hline \text{Number of Drivers }, x & \text{Number of Speeding Tickets}, \boldsymbol{y} \\ \hline 1 & 6 \\ \hline 1 & 4 \\ \hline 2 & 3 \\ \hline 7 & 8 \\ \hline \end{array} </code></p>
<img src="/qimages/43244" /><p>ATTENDING TO PRECISION The graph represents a function. Find the input value corresponding to an output of <code class='latex inline'>\displaystyle 2 . </code></p>
<p>State the domain and range of each relation. Then determine whether the relation is a function, and justify your answer.</p><img src="/qimages/85" />
<p>Determine whether each relation is a function, and state its domain and range.</p><p><code class='latex inline'>\displaystyle 3x^2 + 2y =6 </code></p>
<p>Determine whether each relation is a function, and state its domain and range.</p><p><code class='latex inline'>\displaystyle y = 2x + 3 </code></p>
<p>Evaluate the function <code class='latex inline'>\displaystyle f(x)=3 x^{2}-3 x+1 </code> at the given values.</p><p>a) <code class='latex inline'>\displaystyle f(-1) </code></p><p>b) <code class='latex inline'>\displaystyle f(3) </code></p><p>c) <code class='latex inline'>\displaystyle f(0.5) </code></p>
<p>If <code class='latex inline'>\displaystyle f(-2)=6 </code>, what point must be on the graph of <code class='latex inline'>\displaystyle f </code> ? Explain.</p>
<p>Determine the domain and range for each of the following and state whether it is a function:</p><p><code class='latex inline'>\displaystyle f(x) = 3x + 1 </code></p>
<p>State which of the following are graphs of functions.</p><img src="/qimages/63849" />
<p>Is the relation in the graph shown</p><p>at the right a function? Use the</p><p>vertical line test.</p><img src="/qimages/55055" />
<p>If a company&#39;s profit or loss depends on the number of items sold, which is the most reasonable set of values for the domain in this relation? Explain.</p><p>a) negative integers</p><p>b) positive integers</p><p>c) integers between <code class='latex inline'>\displaystyle -1500 </code> and 1500</p>
<p>If <code class='latex inline'>\displaystyle f(x)=-2 x-3 </code> and <code class='latex inline'>\displaystyle g(x)=x^{2}+5 x </code>, find each value.</p><p><code class='latex inline'>\displaystyle g(-3) </code></p>
<p>Which of these relations is not a function of <code class='latex inline'>\displaystyle x </code> ? <code class='latex inline'>\displaystyle \begin{array}{ll}\text { a) } x=-y^{2} & \text { c) } y=\sqrt{x-3} \\ \text { b) } y=2 x^{2} & \text { d) } x+y=3\end{array} </code></p>
<p>Determine the function that describe the following function rules. Show your work.</p> <ul> <li>The sum of the input and output is 5.</li> </ul>
<p>Determine whether each relation is a function. Explain.</p><img src="/qimages/12964" />
<p>State which of the following are graphs of functions.</p><img src="/qimages/63848" />
<p>Find the domain and range of each relation, and determine whether it is a function.</p><img src="/qimages/88489" />
<p>Identify the domain and range of the relation <code class='latex inline'>\displaystyle \{(-2,3),(-1,4),(0,5),(1,6)\} . </code> Represent the relation with a mapping diagram. Is the relation a function?</p>
<ol> <li>Communication Is the set of ordered pairs <code class='latex inline'>\displaystyle (f, l) </code> a function, if <code class='latex inline'>\displaystyle f </code> is the first name of a person in your school and <code class='latex inline'>\displaystyle l </code> is the last name of the person? Explain.</li> </ol>
<p>If the point <code class='latex inline'>\displaystyle (2,6) </code> is on the graph of <code class='latex inline'>\displaystyle y=f(x) </code>, what is the value of <code class='latex inline'>\displaystyle f(2) </code> ? Explain.</p>
<img src="/qimages/24632" /><p>State the domain and range of the relation.</p><p>A. D 􏰻 {0, 2, 4}; R 􏰻 {􏰸-4, -􏰸2, 0, 2, 4}</p><p>B. D 􏰻 {􏰸-4, -􏰸2, 0, 2, 4}; R 􏰻 {0, 2, 4}</p><p>C. D 􏰻 {0, 2, 4}; R 􏰻 {􏰸-4, -􏰸2, 0}</p><p>D. D 􏰻 {􏰸-4, -􏰸2, 0, 2, 4}; R 􏰻 {-􏰸4, -􏰸2, 0, 2, 4}</p>
<p>If <code class='latex inline'>\displaystyle f(x)=-2 x-3 </code> and <code class='latex inline'>\displaystyle g(x)=x^{2}+5 x </code>, find each value.</p><p><code class='latex inline'>\displaystyle g(-6 m) </code></p>
<p>For each given domain and range, draw two relations on the same axes: one that is a function and one that is not a function.</p> <ul> <li>domain <code class='latex inline'>\{x\in \mathbb{R}\}</code></li> <li>range <code class='latex inline'>\{y\in \mathbb{R}\}</code></li> </ul>
<p>Consider the relation between <code class='latex inline'>x</code> and <code class='latex inline'>y</code> that consists of all points <code class='latex inline'>(x, y)</code> such that the distance from <code class='latex inline'>(x, y)</code> to the origin is <code class='latex inline'>5</code>.</p><p><strong>(a)</strong> Is <code class='latex inline'>(4, 3)</code> in the relation? Explain.</p><p><strong>(b)</strong> Is <code class='latex inline'>(1, 5)</code> in the relation? Explain.</p><p><strong>(c)</strong> Is the relation a function? Explain.</p>
<p>State the domain and range of the relation. Then determine whether the relation is a function, and justify your answer.</p><p><code class='latex inline'> \displaystyle y = 2^{-x} </code></p>
<p>If <code class='latex inline'>f(x)=3x-2</code> and <code class='latex inline'>g(x)=x^2-5</code>, find each value.</p><p>`$2[f(6)]</p>
<p>Determine whether each relation is a function, and state its domain and range.</p><img src="/qimages/7281" />
<p>The function <code class='latex inline'>\displaystyle y=x^{2}+2 </code> has a domain <code class='latex inline'>\displaystyle \{-2,-1,0,1,2\} . </code> Find the range.</p>
<p>Find each value if <code class='latex inline'>\displaystyle f(x)=3 x+2, g(x)=-2 x^{2} </code>, and <code class='latex inline'>\displaystyle h(x)=-4 x^{2}-2 x+5 </code></p><p><code class='latex inline'>\displaystyle g(-3) </code></p>
<p>Graph each relation.Find the domain and range. </p><p><code class='latex inline'>\displaystyle \{(0,1),(1,-3),(-2,-3),(3,-3)\} </code></p>
<p>State the <code class='latex inline'>y</code>-intercept of each quadratic relation.</p> <ul> <li>i) <code class='latex inline'>y = 5x - 2</code> </li> <li>ii) <code class='latex inline'>y =x^2 - 6x + 4</code> </li> <li>iii) <code class='latex inline'>y =x(x + 4)</code></li> <li>iv) <code class='latex inline'>y=2x^3 -4x^2 + 5x -1</code></li> </ul>
<p>Evaluate <code class='latex inline'>\displaystyle f(3) </code> for each of the following.</p><p><code class='latex inline'>\displaystyle \begin{array}{|l|l|l|l|l|} \hline x & 1 & 2 & 3 & 4 \\ \hline y & 2 & 3 & 4 & 5 \\ \hline \end{array} </code></p>
<p>Represent each set of data in a mapping diagram.</p><p><code class='latex inline'>\displaystyle \{(6,-7),(9,-7),(12,-7),(15,-7)\} </code></p>
<p>Represent each set of data in a mapping diagram.</p><p>a) <code class='latex inline'>\displaystyle \{(-4,18),(-3,14),(-2,10),(-1,6), </code>, <code class='latex inline'>\displaystyle (0,2),(1,-2)\} </code></p>
<p>State the domain and the range of each relation.</p><img src="/qimages/21839" />
<p>The mapping diagram below shows the relation between students and their marks on a math quiz.</p><p>a) Write the relation as a set of ordered pairs.</p><p>b) State the domain and range.</p><p>c) Is the relation a function? Explain.</p><img src="/qimages/77943" />
<p>In Exercises 19 and 20, find the value of <code class='latex inline'>\displaystyle x </code> so that <code class='latex inline'>\displaystyle f(x)=7 . </code></p><img src="/qimages/43355" />
<img src="/qimages/55108" />
<p>Find the domain and range of each relation and determine whether it is a function.</p><img src="/qimages/88572" />
<p>Identify the relation that is not a function.</p><img src="/qimages/7120" />
<p>The factors of <code class='latex inline'>4</code> are <code class='latex inline'>1, 2</code>, and <code class='latex inline'>4</code>. The sum of the factors is <code class='latex inline'>1 + 2+ 4 = 7</code>. The sum of the factors is called the sigma function. Therefore, <code class='latex inline'>f(4) = 7</code>.</p><p>a) What is <code class='latex inline'>f(12)</code>? Show your work.</p><p>b) Are there others that will work? Show your work.</p>
<p>Express each relation as a set of ordered pairs. Describe the domain and range.</p><img src="/qimages/38300" />
<p>State the domain and range of each relation.</p><p><code class='latex inline'>\displaystyle \{(-2,3),(-1,3),(0,3),(1,4)\} </code></p>
<p>Determine whether each relation is a function, and state its domain and range.</p><img src="/qimages/7280" />
<p>For each relation, state</p><p>i) the domain and the range</p><p>ii) whether or not it is a function, and justify your answer</p><img src="/qimages/77918" />
<p>Explain the meaning of <code class='latex inline'>\displaystyle f(3)=\frac{1}{2} </code></p>
<p>For each given domain and range, draw two relations on the same axes: one that is a function and one that is not a function.</p> <ul> <li>domain <code class='latex inline'>\{x\in \mathbb{R}\}</code></li> <li>range <code class='latex inline'>\{y\in \mathbb{R}, y \leq 3\}</code></li> </ul>
<p>If <code class='latex inline'>\displaystyle g(x)=3 x-1 </code>, determine the following:</p><p><code class='latex inline'>\displaystyle \begin{array}{llll}\text { a. } g(2) & \text { b. } g(-3) & \text { c. } g\left(\frac{1}{3}\right) & \text { d. } g(a)\end{array} </code></p>
<p>Evaluate <code class='latex inline'>\displaystyle f(4) </code> for each of the following.</p><p> <code class='latex inline'>\displaystyle f=\{(1,5),(3,2),(4,1),(6,2)\} </code></p>
<p>Determine whether each relation is a function.</p><img src="/qimages/12331" />
<p>Determine whether each relation is a function. Explain.</p><img src="/qimages/38337" />
<p>Determine whether each relation is a function. Explain.</p><img src="/qimages/38341" />
<p>CHALLENGE Consider <code class='latex inline'>\displaystyle f(x)=-4.3 x-2 . </code> Write <code class='latex inline'>\displaystyle f(g+3.5) </code> and simplify by combining like terms.</p>
<p><code class='latex inline'>\displaystyle f(x)=6 x+7 </code> and <code class='latex inline'>\displaystyle g(x)=x^{2}-4 </code>, find each value.</p><p><code class='latex inline'>\displaystyle f(m) </code></p>
<p>Evaluate <code class='latex inline'>\displaystyle f(4) </code> for each of the following.</p><img src="/qimages/163371" />
<p>Evaluate <code class='latex inline'>\displaystyle f(4) </code> for each of the following.</p><p><code class='latex inline'>\displaystyle \begin{array}{|l|r|r|r|r|} \hline x & 2 & 4 & 6 & 8 \\ \hline f(x) & 4 & 8 & 12 & 16 \\ \hline \end{array} </code></p>
<p>Evaluate each function.</p><p><code class='latex inline'>\displaystyle f(2.5) </code> if <code class='latex inline'>\displaystyle f(x)=16 x^{2} </code></p>
<p>Determine whether each relation is a function. Assume that each different variable has a different value.</p><p><code class='latex inline'>\displaystyle \{(a, b),(b, c),(c, d),(d, e)\} </code></p>
<p>The relation that is also a function is</p><p>A. <code class='latex inline'>x^2 + y^2 = 25</code></p><p>B. <code class='latex inline'>y^2 =x</code></p><p>C. <code class='latex inline'>x^2 =y</code></p><p>D. <code class='latex inline'>x^2 - y^2 = 25</code></p>
<p>Determine whether each relation is a function.</p><img src="/qimages/24658" />
<p>Find each value if <code class='latex inline'>\displaystyle f(x)=3 x+2, g(x)=-2 x^{2} </code>, and <code class='latex inline'>\displaystyle h(x)=-4 x^{2}-2 x+5 </code></p><p><code class='latex inline'>\displaystyle f\left(\frac{2}{3}\right) </code></p>
<p>Which relations are functions? Explain. For each graph, state the domain and range.</p><img src="/qimages/77937" />
<p>For each relation, state</p><p>i) the domain and the range</p><p>ii) whether or not it is a function, and justify your answer</p><img src="/qimages/77922" />
<p>For each relation, state</p><p>i) the domain and the range</p><p>ii) whether or not it is a function, and justify your answer</p><img src="/qimages/77925" />
<p>Find each value if <code class='latex inline'>\displaystyle f(x)=3 x+2, g(x)=-2 x^{2} </code>, and <code class='latex inline'>\displaystyle h(x)=-4 x^{2}-2 x+5 </code></p><p><code class='latex inline'>\displaystyle g(-6) </code></p>
<p>Consider the relation <code class='latex inline'>f: x^2 + y^2 = 25</code> and <code class='latex inline'>g: y = \sqrt{25- x^2}</code>. Determine whether each relation is a function. State the domain and range of each relation. Show your work.</p>
<p>Which of the following explains why a relation that fails the vertical line test is not a function?</p>
<p>For each relation, state</p><p>i) the domain and the range</p><p>ii) whether or not it is a function, and justify your answer</p><img src="/qimages/77923" />
<p>Determine whether the graph represents a function. Explain. </p><img src="/qimages/43230" />
<p>Determine whether each relation is a function. Assume that each different variable has a different value.</p><p><code class='latex inline'>\displaystyle \{(c, e),(c, d),(c, b)\} </code></p>
<p>Describe the graph of relation that satisfies each set of conditions.</p><p>There are two entries in the domain and five entries in the range.</p>
<p>Determine whether each relation is a function. Explain.</p><img src="/qimages/12958" />
<p>Does the table or graph represent a linear or nonlinear function? Explain.</p><p><code class='latex inline'>\displaystyle \begin{array}{|l|c|c|c|c|} \hline \boldsymbol{x} & 2 & 7 & 12 & 17 \\ \hline \boldsymbol{y} & 2 & -1 & -4 & -7 \\ \hline \end{array} </code></p>
<p>State the domain and the range of each relation.</p><img src="/qimages/21837" />
<p>Represent each set of data in a mapping diagram.</p><p>b) <code class='latex inline'>\displaystyle \{(-3,3),(-2,-3),(-1,3),(-1,-3), </code>, <code class='latex inline'>\displaystyle (-2,3),(-3,-3)\} </code></p>
<p>Determine whether the relation is a function, and state its domain and range. Show your work.</p><p><code class='latex inline'>x^2 = 2y + 1</code></p>
<p>Is the relation a function? Why or why not?</p><p><code class='latex inline'>\displaystyle \begin{aligned} k:(x, y) &=(\text { number of households, number of TV's }) \\ &=\{(1,5),(1,4),(2,3),(3,2)\} \end{aligned} </code></p>
<p>Determine whether each relation is a function. Explain.</p><p><code class='latex inline'>\displaystyle \begin{array}{|c|c|}\hline Domain & Range \\ \hline 4 & 6 \\ \hline-5 & 3 \\ \hline 6 & -3 \\ \hline-5 & 5 \\ \hline\end{array} </code></p>
<p>State which of the following are graphs of functions.</p><img src="/qimages/63850" />
<p>Determine the domain and range of each of the following relations.</p><img src="/qimages/63864" />
<p>If <code class='latex inline'>\displaystyle f(x)=-2 x-3 </code> and <code class='latex inline'>\displaystyle g(x)=x^{2}+5 x </code>, find each value.</p><p><code class='latex inline'>\displaystyle f(r+2) </code></p>
<p>List the domain and range ofeach relation.</p><p><code class='latex inline'>\displaystyle \{(0,4),(4,0),(-3,-4),(-4,-3)\} </code></p>
<p>If <code class='latex inline'>\displaystyle f(3 b-1)=9 b-1 </code>, find one possible expression for <code class='latex inline'>\displaystyle f(x) </code>.</p>
<p>Is each relation a function? If not, which ordered pair should be removed to make the relation a function?</p><img src="/qimages/77933" />
<p>Every year, the Rock and Roll Hall of Fame and Museum inducts legendary musicians and musical acts to the Hall. The table shows the number of inductees for each year.</p><p>Represent the data using each of the following:</p><p>a. a mapping diagram</p><p>b. ordered pairs</p><p>c. a graph on the coordinate plane</p><p>Rock and Roll Hall of Fame Inductees <code class='latex inline'>\displaystyle \begin{array}{c|c|c|c} Year & Number of Inductees & Year & Number of Inductees \\ \hline 2001 & 11 & 2004 & 8 \\ 2002 & 8 & 2005 & 7 \\ 2003 & 9 & 2006 & 6 \\ \hline \end{array} </code></p>
<p>For each relation, state</p><p>i) the domain and the range</p><p>ii) whether or not it is a function, and justify your answer</p><img src="/qimages/77919" />
<p>Bill called a garage to ask for a price quote on the size and type of tire he needed.</p><p>a) Explain why this scenario represents a function.</p><p>b) If Bill had given the clerk the tire price, would the clerk be able to tell Bill the tire size and type? Would this scenario represent a function?</p>
<p>State the domain and range of each relation. Then determine whether the relation is a function, and justify your answer.</p><p><code class='latex inline'>\{(1, 4), (1, 9), (2, 7), (,3 -5), (4, 11)\}</code></p>
<p>State the domain and range of each relation.</p><p><code class='latex inline'>\displaystyle \{(0,2),(1,5)(3,11),(4,14),(5,15)\} </code></p>
<p>Determine whether each relation is a function. Assume that each different variable has a different value.</p><p><code class='latex inline'>\displaystyle \{(b, b),(c, d),(d, c),(c, a)\} </code></p>
<p>Determine whether each relation is a function.</p><p><code class='latex inline'>\displaystyle \{(1,1),(2,0),(3,1),(4,3),(0,2)\} </code></p>
<p>The table below lists all the ordered pairs that belong to the function <code class='latex inline'>g(x)</code></p><p><code class='latex inline'>\displaystyle \begin{array}{|c|c|c|c|c|c|c|} \hline \mathrm{x} & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \mathrm{g}(\mathrm{x}) & 3 & 4 & 7 & 12 & 19 & 28 \\ \hline \end{array} </code></p><p><strong>(a)</strong> Determine an equation for <code class='latex inline'>g(x)</code>.</p><p><strong>(b)</strong> Does <code class='latex inline'>g(3) - g(2) = g(3- 2)</code>? Explain.</p>
<p>The graph of <code class='latex inline'>\displaystyle y=f(x) </code> is shown at the right.</p><p>a) State the domain and range of <code class='latex inline'>\displaystyle f </code>.</p><p>b) Evaluate.</p><p>i) <code class='latex inline'>\displaystyle f(3) </code></p><p>ii) <code class='latex inline'>\displaystyle f(5) </code></p><p>iii) <code class='latex inline'>\displaystyle f(5-3) </code></p><p>iv) <code class='latex inline'>\displaystyle f(5)-f(3) </code></p><p>c) In part (b), why is the value in (iv) not the same as that in (iii)?</p><p>d) <code class='latex inline'>\displaystyle f(2)=5 . </code> What is the corresponding ordered pair? What does 2 represent? What does <code class='latex inline'>\displaystyle f(2) </code> represent?</p><img src="/qimages/163366" />
<p>State which of the following are graphs of functions.</p><img src="/qimages/63851" />
<p>Evaluate each function.</p><p><code class='latex inline'>\displaystyle f(-8) </code> if <code class='latex inline'>\displaystyle f(x)=5 x^{3}+1 </code></p>
<p>Determine whether each relation is a function.</p><p><code class='latex inline'>\displaystyle x=15 </code></p>
<p>Express each relation as a table, a graph, and a mapping. Then determine the domain and range.</p><p><code class='latex inline'>\displaystyle \{(5,2),(5,6),(3,-2),(0,-2)\} </code></p>
<p>Which variable would be associated with the domain for the following pairs of related quantities? Which variable would be associated with the range? Explain.</p><p>a) heating bill, outdoor temperature</p><p>b) report card mark, time spent doing homework</p><p>c) person, date of birth</p><p>d) number of slices of pizza, number of cuts</p>
<p>State the domain and range of each relation.</p><p><code class='latex inline'>\displaystyle \{(-3,4),(2,1),(4,4),(9,5)\} </code></p>
<p>Evaluate each function for the given value of <code class='latex inline'>\displaystyle x </code>, and write the input <code class='latex inline'>\displaystyle x </code> and output <code class='latex inline'>\displaystyle f(x) </code> as an ordered pair.</p><p><code class='latex inline'>\displaystyle f(x)=\frac{2}{9} x-\frac{9}{2} </code> for <code class='latex inline'>\displaystyle x=9 </code></p>
<p>In Exercises 19 and 20, find the value of <code class='latex inline'>\displaystyle x </code> so that <code class='latex inline'>\displaystyle f(x)=7 . </code></p><img src="/qimages/43356" />
<p>Evaluate <code class='latex inline'>\displaystyle f(3) </code> for each of the following.</p><img src="/qimages/163357" />
<p>Determine the domain and range of each of the following relations.</p><img src="/qimages/63861" />
<p>Which is different? Find &quot;both&quot; answers.</p> <ul> <li>Find the range of the function represented by the table.</li> <li><p>Find the inputs of the function represented by the table.</p></li> <li><p><code class='latex inline'>\displaystyle \begin{array}{|c|c|c|c|} \hline \boldsymbol{x} & -1 & 0 & 1 \\ \hline \boldsymbol{y} & 7 & 5 & -1 \\ \hline \end{array} </code></p></li> <li><p>Find the <code class='latex inline'>\displaystyle x </code> -values of the function represented by <code class='latex inline'>\displaystyle (-1,7),(0,5) </code>, and <code class='latex inline'>\displaystyle (1,-1) </code>.</p></li> <li><p>Find the domain of the function represented by <code class='latex inline'>\displaystyle (-1,7),(0,5) </code>, and <code class='latex inline'>\displaystyle (1,-1) </code>.</p></li> </ul>
<p>For each relation, state</p><p>i) the domain and the range</p><p>ii) whether or not it is a function, and justify your answer</p><img src="/qimages/77917" />
<p>If <code class='latex inline'>f(x)=20-2x</code>, find <code class='latex inline'>f(7)</code>.</p><p>A. 6</p><p>B. 7</p><p>C. 13</p><p>D. 14</p>
<p>Find the domain and range of each relation, and determine whether it is a function.</p><img src="/qimages/88487" />
<p>The factors of <code class='latex inline'>4</code> are <code class='latex inline'>1, 2</code>, and <code class='latex inline'>4</code>. The sum of the factors is <code class='latex inline'>1 + 2+ 4 = 7</code>. The sum of the factors is called the sigma function. Therefore, <code class='latex inline'>f(4) = 7</code>.</p><p>What is <code class='latex inline'>f(15)</code>? Show your work.</p>
<p>State the domain and range of the relation. Then determine whether the relation is a function, and justify your answer.</p><p><code class='latex inline'> \displaystyle y=\frac{1}{x + 3} </code></p>
<p><code class='latex inline'>\displaystyle f(x)=6 x+7 </code> and <code class='latex inline'>\displaystyle g(x)=x^{2}-4 </code>, find each value.</p><p><code class='latex inline'>\displaystyle g(5) </code></p>
<p>Represent each set of data in a mapping diagram.</p><p>c) <code class='latex inline'>\displaystyle \{(2,1),(3,3),(4,5),(5,1),(6,3),(7,5)\} </code></p>
<p>Determine the domain and range of each of the following relations.</p><img src="/qimages/63862" />
<p>Use the vertical line test to determine whether the relation is a function.</p><img src="/qimages/55069" />
<p>Graph the relation <code class='latex inline'>\displaystyle \{(-2,1),(0,2),(-1,-1),(-2,-2)\} . </code> What are the domain and range?</p>
<p>Is the relation a function? Why or why not?</p><img src="/qimages/77929" />
<p>A rock rolls off a cliff <code class='latex inline'>\displaystyle 66 \mathrm{~m} </code> high. Which set of values best represents the range in the relationship between the time elapsed, in seconds, and the resultant height, in metres? Explain.</p><p>a) 100 to 200</p><p>c) <code class='latex inline'>\displaystyle -100 </code> to 100</p><p>b) <code class='latex inline'>\displaystyle -100 </code> to 0</p><p>d) 0 to 66</p>
<p><code class='latex inline'>\displaystyle f(x)=6 x+7 </code> and <code class='latex inline'>\displaystyle g(x)=x^{2}-4 </code>, find each value.</p><p><code class='latex inline'>\displaystyle g(-4 t) </code></p>
<p>Find each value if <code class='latex inline'>\displaystyle f(x)=3 x+2, g(x)=-2 x^{2} </code>, and <code class='latex inline'>\displaystyle h(x)=-4 x^{2}-2 x+5 </code></p><p><code class='latex inline'>\displaystyle h(3) </code></p>
<p>Which scatter plot represents a function? Explain. For each graph, state the domain and range.</p><img src="/qimages/77935" />
<p>Determine whether each relation is a function, and state its domain and range.</p><p><code class='latex inline'>\{(2, 7), (1, 3), (2, 6), (10, -1)\}</code></p>
<p>Is each relation a function? If not, which ordered pair should be removed to make the relation a function?</p><img src="/qimages/77932" />
<p>For each given domain and range, draw two relations on the same axes: one that is a function and one that is not a function.</p> <ul> <li>domain <code class='latex inline'>\{x\in \mathbb{R}, x \leq 5\}</code></li> <li>range <code class='latex inline'>\{y\in \mathbb{R}, y \geq - 6\}</code></li> </ul>
<p>Determine whether each relation is a function. Explain.</p><img src="/qimages/12965" />
<p>If <code class='latex inline'>\displaystyle f(x)=7-3 x </code> and <code class='latex inline'>\displaystyle g(x)=3 x-7 </code>, what is the value of <code class='latex inline'>\displaystyle f(1)+g(1) </code> ?</p>
<p>Use the vertical line test to determine whether the relation is a function.</p><img src="/qimages/55067" />
<img src="/qimages/55060" />
<p>State the domain and range of each relation.</p><p><code class='latex inline'>\displaystyle \{(-3,2),(-1,4),(1,4),(3,2),(5,3)\} </code></p>
<p>CCSS SENSE-MAKING Identify the function graphed as linear or nonlinear. Then estimate and interpret the intercepts of the graph, any symmetry, where the function is positive, negative, increasing, and decreasing, the <code class='latex inline'>\displaystyle x </code> -coordinate of any relative extrema, and the end behavior of the graph.</p><img src="/qimages/38410" />
<p>State the domain and the range of each relation.</p><img src="/qimages/21838" />
<p>Determine whether each relation is a function. Assume that each different variable has a different value.</p><p><code class='latex inline'>\displaystyle \{(a, b),(b, a),(c, c),(e, d)\} </code></p>
<p>Martin wants to build an additional closet in a corner of his bedroom. Because the closet will be in a corner, only two new walls need to be built. The total length of the two new walls must be <code class='latex inline'>12</code> m. Martin wants the length of the closet to be twice as long as the width, as shown in the diagram. </p><p>What is <code class='latex inline'>l</code> as a function of <code class='latex inline'>w</code>? Show your work.</p>
<p>For each function below,</p><p>i) determine <code class='latex inline'>\displaystyle f(-2), f(1) </code>, and <code class='latex inline'>\displaystyle f\left(\frac{1}{2}\right) </code> ii) write the function in mapping</p><p>notation</p><p>d) <code class='latex inline'>\displaystyle f(x)=7 </code></p>
<p>Express each relation as a table, a graph, and a mapping. Then determine the domain and range.</p><p><code class='latex inline'>\displaystyle \{(5,-7),(-1,4),(0,-5),(-2,3)\} </code></p>
<p>Determine whether the relation is a function. Explain.</p><img src="/qimages/44298" />
<p>Determine whether each relation is a function.</p><p><code class='latex inline'>\displaystyle y=3 x+2 y </code></p>
<p>If <code class='latex inline'>f(x)=3x-2</code> and <code class='latex inline'>g(x)=x^2-5</code>, find each value.</p><p><code class='latex inline'>g(-3)</code></p>
<p>Determine whether each relation is a function.</p><img src="/qimages/24657" />
<p>CCSS SENSE-MAKING Identify the function graphed as linear or nonlinear. Then estimate and interpret the intercepts of the graph, any symmetry, where the function is positive, negative, increasing, and decreasing, the <code class='latex inline'>\displaystyle x </code> -coordinate of any relative extrema, and the end behavior of the graph.</p><img src="/qimages/38403" />
<p>Dates and outdoor temperatures are related. The hottest temperature recorded in Canada was <code class='latex inline'>\displaystyle 45^{\circ} \mathrm{C} </code> at Midvale and Yellow Grass, Saskatchewan, on July <code class='latex inline'>\displaystyle 5,1937 . </code> The coldest temperature recorded in Canada was <code class='latex inline'>\displaystyle -63^{\circ} \mathrm{C} </code>, in Snag, in the Yukon Territories, on February 3, <code class='latex inline'>\displaystyle 1947 . </code></p><p>a) What is the independent variable in this relation? What is the dependent variable?</p><p>b) What is the domain?</p><p>c) What is the range?</p><p>d) Is one variable a function of the other? Explain.</p>
<p>Use words and function notation to describe the transformation that can be applied to each graph of <code class='latex inline'>f(x)</code> to obtain the graph of <code class='latex inline'>g(x)</code>. State the domain and range of <code class='latex inline'>f(x)</code> and <code class='latex inline'>g(x)</code>.</p><img src="/qimages/5231" />
<p>a) Express <code class='latex inline'>g: x \to \frac{-2}{x+3}</code> and </p><p><code class='latex inline'>\displaystyle h: x \to 4x^2 -5x </code> in functino nottation.</p><p>b) Determine</p> <ul> <li>i) <code class='latex inline'>h(-1) + h(1)</code></li> <li>ii) <code class='latex inline'>4g(1) -h(2)</code></li> <li>iii) <code class='latex inline'>\sqrt{h(-1)}</code></li> <li>iv) <code class='latex inline'>7[g(-5)]^2</code></li> </ul>
<p>Consider the graph of <code class='latex inline'>y = \sqrt{25 -x^2}</code></p><img src="/qimages/21742" /><p>Use transformations to sketch each graph of <code class='latex inline'>g(x)</code>. Write the equation of <code class='latex inline'>g(x)</code> and state the domain and range.</p><p>a) <code class='latex inline'>g(x) = 2f(x)</code></p><p>b) <code class='latex inline'>g(x) = f(2x)</code></p><p>c) <code class='latex inline'>g(x) = \frac{1}{2}f(x)</code></p><p>d) <code class='latex inline'>g(x) = f(\frac{1}{2}x)</code></p>
<p>Find <code class='latex inline'>\displaystyle f(3) </code> for each function. Sketch a graph of each function.</p><p><code class='latex inline'>\displaystyle f(x)=2(x-3)(x+1) </code></p>
<p>Use the vertical line test to determine whether the relation is a function.</p><img src="/qimages/55070" />
<ol> <li>Communication a) Is the set of ordered pairs <code class='latex inline'>\displaystyle (n, f) </code> a function, if <code class='latex inline'>\displaystyle n </code> is a person&#39;s name and <code class='latex inline'>\displaystyle f </code> is the person&#39;s fingerprints? b) Reverse the terms of the ordered pairs so that the set of ordered pairs is <code class='latex inline'>\displaystyle (f, n) </code>. Is the new set of ordered pairs a function? Explain.</li> </ol>
<p>Given <code class='latex inline'>f(x) = x^2 -5x + 3</code>, then</p><p>A. f(-1) = -3</p><p>B. f(-1) = 7</p><p>C. f(-1) = -1</p><p>D. f(-1) = 9</p>
<p>Determine the function that describe the following function rules. Show your work.</p> <ul> <li>The input is 3 less than the output.</li> </ul>
<p>For each relation, state</p><p>i) the domain and the range</p><p>ii) whether or not it is a function, and justify your answer</p><img src="/qimages/77920" />
<p>A function has the following domain and range:</p><p><code class='latex inline'>\displaystyle \begin{aligned} \text { Domain } &=\{t \in \mathbf{R} \mid-3 \leq t \leq 5\} \\\\ \text { Range } &=\{g(t) \in \mathbf{R} \mid 0 \leq g(t) \leq 10\} \end{aligned} </code></p><p>Draw a sketch of this function if it is quadratic.</p>
<p>Determine the function that describe the following function rules. Show your work.</p> <ul> <li>The output is 5 less than the input multiplied by 2.</li> </ul>
<p>State the domain and range of each relation.</p><p><code class='latex inline'>\displaystyle \{(3,1),(4,-2),(5,3),(6,0)\} </code></p>
<p>Determine whether each relation is a function.</p><p><code class='latex inline'>\displaystyle \{(4,5),(3,-2),(-2,5),(4,7)\} </code></p>
<p><code class='latex inline'>\displaystyle f(x)=6 x+7 </code> and <code class='latex inline'>\displaystyle g(x)=x^{2}-4 </code>, find each value.</p><p><code class='latex inline'>\displaystyle f(2)+g(2) </code></p>
<p>Is the relation a function? Why or why not?</p><p><code class='latex inline'>\displaystyle \begin{aligned} h:(x, y) &=(\text { age of child, number of siblings }) \\ &=\{(1,4),(2,4),(3,3),(4,2)\} \end{aligned} </code></p>
<p>Determine which of the following relations is a function.</p><p>F <code class='latex inline'>\displaystyle \{(-3,2),(4,1),(-3,5)\} </code> G <code class='latex inline'>\displaystyle \{(2,-1),(4,-1),(2,6)\} </code> H <code class='latex inline'>\displaystyle \{(-3,-4),(-3,6),(8,-2)\} </code> J <code class='latex inline'>\displaystyle \{(5,-1),(3,-2),(-2,-2)\} </code></p>
<p>Determine the equations that describe the following function rules. Show your work.</p> <ul> <li>Subtract 2 from the input and then multiply by 3 to find the output.</li> </ul>
<p>The table gives typical resting pulse rates for six different mammals.</p><img src="/qimages/77941" /><p>a) Is the resting pulse rate a function of the type of mammal? Explain</p><p>b) If more mammals and their resting pulse rates were included, would the extended table of values be a function? Explain.</p>
<p>Determine whether each relation is a function. Explain.</p><img src="/qimages/12963" />
<p>Determine the range of each function for the domain <code class='latex inline'>\displaystyle \{-2,-1,0,1,2\} </code></p><p><code class='latex inline'>y = 4x + 3</code></p>
<p>Find the domain and range of each relation, and determine whether it is a function.</p><img src="/qimages/88488" />
<p>Determine the domain and range of each of the following relations.</p><img src="/qimages/63863" />
<p>Determine whether each relation is a function. Explain.</p><p><code class='latex inline'>\displaystyle \begin{array}{|c|c|}\hline Domain & Ralige \\ \hline 2 & 6 \\ \hline 5 & 7 \\ \hline 6 & 9 \\ \hline 6 & 10 \\ \hline\end{array} </code></p>
<p>Find <code class='latex inline'>\displaystyle f(3) </code> for each function. Sketch a graph of each function.</p><p><code class='latex inline'>\displaystyle f(x)=-1 </code></p>
<p>Find each value if <code class='latex inline'>\displaystyle f(x)=3 x+2, g(x)=-2 x^{2} </code>, and <code class='latex inline'>\displaystyle h(x)=-4 x^{2}-2 x+5 </code></p><p><code class='latex inline'>\displaystyle f(9) </code></p>
<p>Find <code class='latex inline'>\displaystyle f(3) </code> for each function. Sketch a graph of each function.</p><p> <code class='latex inline'>\displaystyle f(x)=7 x-5 </code></p>
<p>For each relation, state</p><p>i) the domain and the range</p><p>ii) whether or not it is a function, and justify your answer</p><img src="/qimages/77924" />
<p>Determine whether each relation is a function.</p><img src="/qimages/38366" />
<p>For each given domain and range, draw two relations on the same axes: one that is a function and one that is not a function.</p> <ul> <li>domain <code class='latex inline'>\{x\in \mathbb{R}, x \geq - 4\}</code></li> <li>range <code class='latex inline'>\{y\in \mathbb{R}, y \geq 1\}</code></li> </ul>
<p>The factors of <code class='latex inline'>4</code> are <code class='latex inline'>1, 2</code>, and <code class='latex inline'>4</code>. The sum of the factors is <code class='latex inline'>1 + 2+ 4 = 7</code>. The sum of the factors is called the sigma function. Therefore, <code class='latex inline'>f(4) = 7</code>.</p><p>Find <code class='latex inline'>f(6), f(7)</code>, and <code class='latex inline'>f(8)</code>. Show your work.</p>
<p>Determine whether each relation is a function.</p><img src="/qimages/24659" />
<p>If <code class='latex inline'>f(x)=3x-2</code> and <code class='latex inline'>g(x)=x^2-5</code>, find each value.</p><p><code class='latex inline'>f(4)</code></p>
<p>Describe the graph of relation that satisfies the set of conditions below.</p><p>Three are three entries in the domain and three entries in the range.</p>
<p>If <code class='latex inline'>\displaystyle f(x)=-2 x-3 </code> and <code class='latex inline'>\displaystyle g(x)=x^{2}+5 x </code>, find each value.</p><p><code class='latex inline'>\displaystyle f(6) </code></p>
<p>Determine whether each relation is a function. Explain.</p><img src="/qimages/12962" />
<p>If <code class='latex inline'>\displaystyle f(x)=-2 x-3 </code> and <code class='latex inline'>\displaystyle g(x)=x^{2}+5 x </code>, find each value.</p><p><code class='latex inline'>\displaystyle f(0)-7 </code></p>
<p>State the domain and range of each relation, and state whether it is a function.</p><p><code class='latex inline'>\displaystyle \begin{array}{|r|r|}\hlinex & y \\ \hline 2 & 5 \\ 1 & 2 \\ 0 & 1 \\ -1 & 2 \\ -2 & 5 \\ \hline\end{array} </code></p>
<p>Reasoning A function consists of the pairs <code class='latex inline'>\displaystyle (2,3),(x, 4) </code>, and <code class='latex inline'>\displaystyle (5,6) . </code> What values, if any, may <code class='latex inline'>\displaystyle x </code> not assume?</p>
<p>For each of the following, determine <code class='latex inline'>\displaystyle f(3) </code></p><p>a) <code class='latex inline'>\displaystyle f=\{(1,2),(2,3),(3,5),(4,5)\} </code></p><p>b)<code class='latex inline'>\displaystyle \begin{array}{|l|l|l|l|l|} \hline \boldsymbol{x} & 1 & 3 & 5 & 7 \\ \hline \boldsymbol{f}(\boldsymbol{x}) & 2 & 4 & 6 & 8 \\ \hline \end{array} </code>c) <code class='latex inline'>\displaystyle f(x)=4 x^{2}-2 x+1 </code></p><img src="/qimages/160128" /><p>d)</p>
<ol> <li>State the domain and the range for each relation. Determine if each relation is a function.</li> </ol> <img src="/qimages/17790" />
<p>For the given domain and range, draw one relation that is a function and one that is not. Use the same set of axes.</p><p>domain <code class='latex inline'>\displaystyle \{x \in \mathbb{R}, x \geq-4\} </code> range <code class='latex inline'>\displaystyle \{y \in \mathbb{R}, y \geq 1\} </code></p>
<p>Given the function <code class='latex inline'>\displaystyle f </code> represented by the given set of ordered pairs <code class='latex inline'>\displaystyle f=\{(-1,3),(0,4),(1,5),(2,6)\} </code>, determine <code class='latex inline'>\displaystyle f(0) </code> and <code class='latex inline'>\displaystyle f(2) </code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.