5. Q5d
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Write an absolute value equation for each graph.</p><img src="/qimages/89594" />
Similar Question 2
<p>If <code class='latex inline'>f(x) =| x |</code>, sketch the graph of each function and state the domain and range.</p><p><code class='latex inline'>y=4f(2(x - 1)) - 2</code></p>
Similar Question 3
<p>In Exercises 19-22, compare the graphs. Find the value of <code class='latex inline'>\displaystyle h, k </code>, or <code class='latex inline'>\displaystyle a . </code></p><img src="/qimages/44234" />
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>In Exercises 19-22, compare the graphs. Find the value of <code class='latex inline'>\displaystyle h, k </code>, or <code class='latex inline'>\displaystyle a . </code></p><img src="/qimages/44236" />
<p>If <code class='latex inline'>f(x) =| x |</code>, sketch the graph of each function and state the domain and range.</p><p><code class='latex inline'>y=2f(x - 3)</code></p>
<p>The graph of the equation <code class='latex inline'>y=(x-1)^2+2</code> is the graph of a parabola that opens up and has its vertex at (1,2). What do you know about the graphs of the following equations?</p><p><code class='latex inline'> \displaystyle y = |x-1 | + 2 </code></p>
<p>Sketch graphs of the pair of transformed functions, along with the graph of the parent function, on the same set of axes. Describe the transformations in words and note any invariant points.</p><p><code class='latex inline'> \displaystyle y=| \frac{1}{3}x |, y = | \frac{1}{5}x| </code></p>
<p>In Exercises 19-22, compare the graphs. Find the value of <code class='latex inline'>\displaystyle h, k </code>, or <code class='latex inline'>\displaystyle a . </code></p><img src="/qimages/44233" />
<p>In Exercises 19-22, compare the graphs. Find the value of <code class='latex inline'>\displaystyle h, k </code>, or <code class='latex inline'>\displaystyle a . </code></p><img src="/qimages/44234" />
<p>Sketch each set of functions on the same set of axes.</p><p><code class='latex inline'>y =| x |, y = | \frac{1}{2}x |, y = - | \frac{1}{2}x |, y = - |\frac{1}{2} (x + 3) | - 2</code></p>
<p>The range of <code class='latex inline'>f(x) = -|x -2| + 3</code> is </p><p>A. <code class='latex inline'>\{y\in \mathbb{R} \vert y \leq 3\}</code></p><p>B. <code class='latex inline'>\{y\in \mathbb{R} \vert y \geq 3\}</code></p><p>C. <code class='latex inline'>\{y\in \mathbb{R} \vert 2 \leq y \leq 3\}</code></p><p>D. <code class='latex inline'>\{y\in \mathbb{R} \vert 0 \leq y \leq 2\}</code></p>
<img src="/qimages/44214" /><p>REASONING The graph of which function has the same <code class='latex inline'>\displaystyle y </code> -intercept as the graph of <code class='latex inline'>\displaystyle f(x)=|x-2|+5 ? </code> Explain. <code class='latex inline'>\displaystyle g(x)=|3 x-2|+5|\quad h(x)=3| x-2 \mid+5 </code></p>
<p>If <code class='latex inline'>f(x) =| x |</code>, sketch the graph of each function and state the domain and range.</p><p><code class='latex inline'>y=4f(2(x - 1)) - 2</code></p>
<img src="/qimages/14193" /><p>Which function can be represented by this graph? a) <code class='latex inline'>\displaystyle f(x)=|2 x|-4 \quad </code> c) <code class='latex inline'>\displaystyle f(x)=|2 x-4| </code> b) <code class='latex inline'>\displaystyle f(x)=\left|\frac{1}{2} x-2\right| \quad </code> d) <code class='latex inline'>\displaystyle f(x)=|2 x|+4 </code></p>
<p>For <code class='latex inline'>f(x) = | x|</code>, sketch the graph of <code class='latex inline'>p(x) = f(4x + 8)</code>.</p>
<p>The function <code class='latex inline'>y=f(x)</code> has been transformed to <code class='latex inline'>y=af[k(x - d)] + c</code>. Determine <code class='latex inline'>a, k, c,</code> and <code class='latex inline'>d</code>; state the domain and range for each transformation.</p><p>A horizontal compression by the factor <code class='latex inline'>\frac{1}{3}</code>, a vertical stretch by the factor 3, a translation 1 unit right, and a translation 6 units down are applied to <code class='latex inline'>y = | x |</code>.</p>
<p>Low and high blood pressure can both be dangerous. Doctors use a special index, <code class='latex inline'>P_d</code>, to measure how far from normal someone&#39;s blood pressure is. In the equation <code class='latex inline'>P_d = | P - \bar{P} |</code>, <code class='latex inline'>P</code> is a person&#39;s systolic blood pressure and <code class='latex inline'>\bar{P}</code> is the normal systolic blood pressure. Sketch the graph of this index. Assume that normal systolic blood pressure is 120mm(Hg).</p>
<p>In Exercises 19-22, compare the graphs. Find the value of <code class='latex inline'>\displaystyle h, k </code>, or <code class='latex inline'>\displaystyle a . </code></p><img src="/qimages/44235" />
<p>Given the function <code class='latex inline'>f(x) = x^3 - 2x</code>, sketch <code class='latex inline'>y = f(|x|)</code>.</p>
<p>Write an absolute value equation for each graph.</p><img src="/qimages/89594" />
<p>The graph of <code class='latex inline'>y=2x^2</code> is narrower than the graph of <code class='latex inline'>y=x^2</code>. How do the following graphs compare?</p><p><code class='latex inline'>y=2|x|</code> and <code class='latex inline'>y=|x|</code></p>
<p>Graph each of the following functions:</p><p><code class='latex inline'> \displaystyle y = |-2x^2 + 4x - 3| </code></p>
<p>If <code class='latex inline'>f(x) =| x |</code>, sketch the graph of each function and state the domain and range.</p><p><code class='latex inline'>y=-\frac{1}{2}f(3 (x + 2)) + 4</code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.