14. Q14a
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>State whether each expression is true or false.</p><p><code class='latex inline'> \displaystyle 9^{\frac{1}{2}} + 4^{\frac{1}{2}} = (9 + 4)^{\frac{1}{2}} </code></p>
Similar Question 2
<p>Simplify using the laws of exponents.</p><p><code class='latex inline'>\displaystyle x^{\frac{5}{2}} - x^{\frac{1}{2}} </code></p>
Similar Question 3
<p>Simplify using the laws of exponents.</p><p><code class='latex inline'>\displaystyle x^{-\frac{3}{2}} + 2x^{-\frac{1}{2}} + x^{\frac{1}{2}} </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Add by factoring and simplify.</p><p><code class='latex inline'>\displaystyle 2x^{\frac{1}{3}}(x - 2)^{\frac{2}{3}} - 5x^{\frac{4}{3}}(x - 2)^{-\frac{1}{3}} </code></p><p><a href="https://youtu.be/MWMvpV3tERA">HINT</a></p>
<p>Simplify using the laws of exponents.</p><p><code class='latex inline'>\displaystyle x^{\frac{3}{2}} - x^{-\frac{1}{2}} </code></p>
<p>State whether each expression is true or false.</p><p><code class='latex inline'> \displaystyle 9^{\frac{1}{2}} + 4^{\frac{1}{2}} = (9 + 4)^{\frac{1}{2}} </code></p>
<p>Add by factoring and simplify.</p><p><code class='latex inline'>\displaystyle (x^2 + 1)^{\frac{1}{2}} - 2(x^2 + 1)^{-\frac{1}{2}} </code></p>
<p>Simplify using the laws of exponents.</p><p><code class='latex inline'>\displaystyle x^{-\frac{3}{2}} + 2x^{-\frac{1}{2}} + x^{\frac{1}{2}} </code></p>
<p>Simplify using the laws of exponents.</p><p><code class='latex inline'>\displaystyle 2x^{-\frac{3}{2}} + 2x^{\frac{1}{2}} </code></p>
<p>Simplify using the laws of exponents.</p><p><code class='latex inline'>\displaystyle x^{\frac{5}{2}} - x^{\frac{1}{2}} </code></p>
<p>Add by factoring and simplify.</p><p><code class='latex inline'>\displaystyle x^{\frac{2}{3}} - 5x^{\frac{1}{3}} + 4 </code></p>
<p>Add by factoring and simplify.</p><p><code class='latex inline'>\displaystyle x^{-\frac{1}{3}}(6- x)^{-\frac{2}{3}} - \frac{1}{3}(x - 4)x^{-\frac{4}{3}}(6 - x)^{-\frac{2}{3}} + \frac{2}{3}(x - 4)x^{-\frac{1}{3}}(6 - x)^{-\frac{5}{3}} </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.