3. Q3c
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Write in radical form. Then evaluate without using a calculator.</p><p><code class='latex inline'> \displaystyle -(144)^{0.5} </code></p>
Similar Question 2
<p>Simplify. Express your answers using only positive exponents. </p><p><code class='latex inline'> \displaystyle x^{\frac{1}{4}} \times x^{\frac{1}{4}} </code></p>
Similar Question 3
<p>Write as a single power.</p><p><code class='latex inline'> \displaystyle (-11)^2(-11)^{\frac{3}{4}} </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Evaluate each cube root.</p><p><code class='latex inline'> \displaystyle (-1000)^{\frac{1}{3}} </code></p>
<p>Simplify using the laws of exponents. Express your final answer with only positive powers.</p><p><code class='latex inline'>\displaystyle (\frac{2}{3})^{-\frac{1}{2}}\times \frac{3}{2^2} </code></p>
<p>Write as a single power.</p><p><code class='latex inline'> \displaystyle (-11)^2(-11)^{\frac{3}{4}} </code></p>
<p>Write in radical form. Then evaluate without using a calculator.</p><p><code class='latex inline'> \displaystyle 49^{\frac{1}{2}} </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle (\frac{1}{10 000})^{\frac{3}{4}} </code></p>
<p>Write in radical form. Then evaluate without using a calculator.</p><p><code class='latex inline'> \displaystyle 100^{\frac{1}{2}} </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 32^{\frac{4}{5}} </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle (-\frac{8}{27})^{-\frac{3}{4}} </code></p>
<p>Write in radical form. Then evaluate without using a calculator.</p><p><code class='latex inline'> \displaystyle 81^{\frac{1}{4}} </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle (-\frac{1}{32})^{-\frac{2}{5}} </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 8^{\frac{2}{3}} </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle (-64)^{\frac{5}{3}} </code></p>
<p>Write in radical form. Then evaluate without using a calculator.</p><p><code class='latex inline'> \displaystyle 16^{0.25} </code></p>
<p>Write in radical form. Then evaluate without using a calculator.</p><p><code class='latex inline'> \displaystyle (-125)^{\frac{1}{3}} </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle (\frac{10 000}{81})^{-\frac{3}{4}} </code></p>
<p>Simplify. Express your answers using only positive exponents. </p><p><code class='latex inline'> \displaystyle x^{\frac{1}{4}} \times x^{\frac{1}{4}} </code></p>
<p>Evaluate. Express answers as rational numbers.</p><p><code class='latex inline'>\displaystyle (27)^{\frac{2}{3}} </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle (\frac{1}{8})^{-\frac{7}{3}} </code></p>
<p>Write as a single power.</p><p><code class='latex inline'> \displaystyle \frac{9^{-\frac{1}{5}}}{9^{\frac{2}{3}}} </code></p>
<p>Write as a single power.</p><p><code class='latex inline'> \displaystyle (7^{\frac{5}{6}})^{-\frac{6}{5}} </code></p>
<p>Evaluate each cube root.</p><p> <code class='latex inline'> \displaystyle (\frac{8}{27})^{\frac{1}{3}} </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 25^{-\frac{3}{2}} </code></p>
<p>Evaluate each cube root.</p><p><code class='latex inline'> \displaystyle 64^{\frac{1}{6}} </code></p>
<p>Evaluate each cube root.</p><p><code class='latex inline'> \displaystyle 81^{\frac{1}{4}} </code></p>
<p>Write in radical form. Then evaluate without using a calculator.</p><p><code class='latex inline'> \displaystyle -(144)^{0.5} </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 16^{-\frac{1}{4}} </code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.