9. Q9e
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Factor completely by first removing the greatest common factor (GCF).</p><p><code class='latex inline'>5z^2+40z+60</code></p>
Similar Question 2
<p>Factor completely by first removing the greatest common factor (GCF).</p><p><code class='latex inline'>bx^2+10bx-24b</code></p>
Similar Question 3
<p>Factor each, if possible.</p> <ol> <li><code class='latex inline'> y^2 - 20y + 36</code></li> <li><code class='latex inline'>16 - 6x - x^2</code></li> <li><code class='latex inline'> 8 + 7y - y^2</code></li> </ol>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Factor by grouping.</p><p><code class='latex inline'>3m^2-15m-2m+10</code></p>
<p>Factor completely by first removing the greatest common factor (GCF).</p><p><code class='latex inline'>5z^2+40z+60</code></p>
<p>Factor completely.</p><p><code class='latex inline'>\displaystyle 3t^2 + 6t + 3 </code></p>
<p>Factor. </p><p><code class='latex inline'>3k^2-6k-24</code></p>
<p> Determine the values of x for the following using either factoring or completing the square.</p><p><code class='latex inline'> \displaystyle 2x^2 - 10x - 48 = 0 </code></p>
<p>Factor </p><p><code class='latex inline'>\displaystyle 3n^2 -6n + 15 </code></p>
<p>Factor completely by first removing the greatest common factor.</p><p><code class='latex inline'>3x^2+15x+18</code></p>
<p>Factor completely.</p><p><code class='latex inline'>\displaystyle -5x^2 + 40x -80 </code></p>
<p>Factor.</p><p><code class='latex inline'>4w^2+8w-21</code></p>
<p>Factor each polynomial. Look for common factors first.</p><p><code class='latex inline'>\displaystyle 6 r^{2}+3 r-45 </code></p>
<p>Factor. You may first need to determine a common factor. </p><p><code class='latex inline'>3x^2+18x+15</code></p>
<p>Factor completely by first removing the greatest common factor.</p><p><code class='latex inline'>5k^2+50k+80</code></p>
<p>Factor.</p><p><code class='latex inline'>6m^2-14m-12</code></p>
<p>Factor.</p><p><code class='latex inline'>3x^2+24x + 45</code></p>
<p>Factor. </p><p><code class='latex inline'>12n^3-75n^2+108n</code></p>
<p>Factor each, if possible.</p> <ul> <li><code class='latex inline'>6x^2 - 9xy + 3y^2</code></li> </ul>
<p>Factor each expression.</p><p><code class='latex inline'>c^3d^3+2c^2d^2-8cd</code></p>
<p>Factor each polynomial. Look for common factors first.</p><p><code class='latex inline'>\displaystyle 2 x^{2}+6 x+8 </code></p>
<p>Factor.</p><p><code class='latex inline'>9p^2+15p-6</code></p>
<p>Factor.</p><p><code class='latex inline'>4x^2+16x-48</code></p>
<p>Factor. Then, substitute <code class='latex inline'>x=2</code> into both forms. Are the results the same? Explain. </p><p><code class='latex inline'>8x^2+14x-4</code></p>
<p>Factor.</p><p><code class='latex inline'>6p^2-19p-7</code></p>
<p>Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.</p><p><code class='latex inline'>\displaystyle 12 x^{2}-84 x+147 </code></p>
<p>Factor each expression. Remember to divide out all common factors first.</p><img src="/qimages/54273" />
<p>Factor. You may first need to determine a common factor. </p><p> <code class='latex inline'>3x^2+12x-63</code></p>
<p>Factor.</p><p><code class='latex inline'>10r^2-22r+4</code></p>
<p>Factor.</p><p><code class='latex inline'>10x^2+15x-10</code></p>
<p>Factor.</p><p><code class='latex inline'>2n^2-4n-70</code></p>
<p>How does knowing that factoring is the opposite of expanding help you factor a polynomial such as <code class='latex inline'>-4x^2+38x-48</code>?</p>
<p>Factor. </p><p> <code class='latex inline'>-3x^2-27x-54</code></p>
<p>Factor completely by first removing the greatest common factor (GCF).</p><p><code class='latex inline'>bx^2+10bx-24b</code></p>
<p>Factor.</p><p><code class='latex inline'> \displaystyle 6m^2-90m + 324 </code></p>
<p>Factor completely by first removing the greatest common factor.</p><p><code class='latex inline'>4m^2-32m+48</code></p>
<p>Factor each, if possible.</p> <ul> <li><p><code class='latex inline'>ax^2 + 10 ax - 24a </code></p></li> <li><p><code class='latex inline'> x^3 + 18x^2 + 72x</code></p></li> <li><p><code class='latex inline'> 3x - 2x^2 - x^3</code></p></li> </ul>
<p>Factor by grouping.</p><p><code class='latex inline'>15x^2+10x+12x+8</code></p>
<p>Fully factor each polynomial by applying one or more strategies.</p><p><code class='latex inline'>\displaystyle 40 g^{2}-200 g+250 </code></p>
<p>Factor</p><p><code class='latex inline'>\displaystyle 3x^2-6x + 9 </code></p>
<p>Factor fully.</p><p><code class='latex inline'>\displaystyle 3x^2 -12x + 12 </code></p>
<p>Fully factor each expression.</p><p><code class='latex inline'>\displaystyle (x+3) x^{2}+(x+3) x-(x+3) 20 </code></p>
<p>Factor fully.</p><p><code class='latex inline'>\displaystyle m^3 + 3m^2-4m </code></p>
<p>Factor each, if possible.</p> <ol> <li><code class='latex inline'> y^2 - 20y + 36</code></li> <li><code class='latex inline'>16 - 6x - x^2</code></li> <li><code class='latex inline'> 8 + 7y - y^2</code></li> </ol>
<p> Determine the values of <code class='latex inline'>x</code> for the following by factoring.</p><p><code class='latex inline'> 9x^2 - 18x - 135 = 0 </code></p>
<p>Fully factor each polynomial by applying one or more strategies.</p><p><code class='latex inline'>\displaystyle 2 d^{3}-10 d^{2}+8 d </code></p>
<p>Fully factor each polynomial by applying one or more strategies.</p><p><code class='latex inline'>\displaystyle 3 w^{2}-9 w-30 </code></p>
<p>Factor each expression. Remember to divide out all common factors first.</p><img src="/qimages/54275" />
<p>Factor.</p><p><code class='latex inline'>10t^2-4t-14</code></p>
<p>Fully factor each polynomial by applying one or more strategies.</p><p><code class='latex inline'>\displaystyle 3 h^{2}-24 h+48 </code></p>
<p>Factor.</p><img src="/qimages/15413" />
<p>Factor each polynomial. Look for common factors first.</p><p><code class='latex inline'>\displaystyle 5 b^{2}+15 b+10 </code></p>
<p>Factor</p><p><code class='latex inline'>\displaystyle 2a^2 -2a -24 </code></p>
<p>Factor completely by first removing the greatest common factor (GCF).</p><p><code class='latex inline'>x^3+18x^2+72x</code></p>
<p>Factor</p><p><code class='latex inline'>\displaystyle 5m^2 - 10m -5 </code></p>
<p>Factor.</p><img src="/qimages/54244" />
<p>Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.</p><p><code class='latex inline'>\displaystyle 8 c^{2}-88 c+242 </code></p>
<p>Factor.</p><p><code class='latex inline'>8y^2-22y+12</code></p>
<p>Factor fully.</p><p><code class='latex inline'>\displaystyle 8n^2 + 8n - 6 </code></p>
<p>Factor each expression.</p><p> <code class='latex inline'>-6x-51xy+27xy^2</code></p>
<p>Factor.</p><p><code class='latex inline'>3m^2-6m^3</code></p>
<p>Factor completely.</p><p><code class='latex inline'>\displaystyle -x^2 - x+ 12 </code></p>
<p>Factor completely by first removing the greatest common factor (GCF).</p><p><code class='latex inline'>4s^2-8s-32</code></p>
<p>Factor.</p><p><code class='latex inline'>14-5w-w^2</code></p>
<p>Factor completely by first removing the greatest common factor (GCF).</p><p> <code class='latex inline'>2d^2-22d+56</code></p>
<p>Factor.</p><p><code class='latex inline'>8k^2-16k+6</code></p>
<p>Fully factor each polynomial by applying one or more strategies.</p><p><code class='latex inline'>\displaystyle 2 x^{2}+16 x+8 </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.