19. Q19
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Video not available! See below for lectures and more practice questions!
Similar Question 1
<p>a) Find a number <code class='latex inline'>\delta</code> such that if <code class='latex inline'>|x-2| < \delta</code>, then <code class='latex inline'>|4x -8|< \epsilon</code>, where <code class='latex inline'>\epsilon = 0.1</code></p>
Similar Question 2
<p>Prove the statement using the <code class='latex inline'>\delta, \epsilon</code>` definition of a limit.</p><p><code class='latex inline'>\displaystyle \lim_{x\to 2} (x^2 -4x + 5) =1 </code></p>
Similar Question 3
<p>a) Find a number <code class='latex inline'>\delta</code> such that if <code class='latex inline'>|x-2| < \delta</code>, then <code class='latex inline'>|4x -8|< \epsilon</code>, where <code class='latex inline'>\epsilon = 0.1</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>(a) Use numerical and graphical evidence to guess the value of the limit</p><p><code class='latex inline'>\displaystyle \lim _{x \rightarrow 1} \frac{x^{3}-1}{\sqrt{x}-1} </code></p><p>(b) How close to 1 does <code class='latex inline'>\displaystyle x </code> have to be to ensure that the function in part (a) is within a distance <code class='latex inline'>\displaystyle 0.5 </code> of its limit?</p>
<p>Prove the statement using the <code class='latex inline'>\delta, \epsilon</code>` definition of a limit.</p><p><code class='latex inline'>\displaystyle \lim_{x\to -3}(1 - 4x) =13 </code></p>
<p>Prove the statement using the <code class='latex inline'>\delta, \epsilon</code>` definition of a limit.</p><p><code class='latex inline'>\displaystyle \lim_{x\to 3}(1 + \frac{1}{3}x) =2 </code></p>
<p>Prove the statement using the <code class='latex inline'>\delta, \epsilon</code>` definition of a limit.</p><p><code class='latex inline'>\displaystyle \lim_{x\to 2} (x^2 -4x + 5) =1 </code></p>
<p>Prove the statement using the <code class='latex inline'>\delta, \epsilon</code>` definition of a limit.</p><p><code class='latex inline'>\displaystyle \lim_{x\to 10} (3- \frac{4}{5}x) = -5 </code></p>
<p>a) Find a number <code class='latex inline'>\delta</code> such that if <code class='latex inline'>|x-2| < \delta</code>, then <code class='latex inline'>|4x -8|< \epsilon</code>, where <code class='latex inline'>\epsilon = 0.1</code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.